

Proposal for 400GE Optical PMDs for SMF Objectives based on 4 x 100G DMT David Lewis, Sacha Corbeil, Beck Mason

Summary

- 10km objectives (400GBASE-LR4) covered in takahara_3bs_01_1114
- This presentation provides the baseline proposals for
 - 500 m reach on parallel SMF (400GBASE-PSM4)
 - 2 km reach on duplex SMF (400GBASE-FR4)

Supporters and Contributors

- Hisaya Sakamoto, Fujitsu Optical Components
- Hideki Isono, Fujitsu Optical Components
- Tomoo Takahara, Fujitsu Optical Components
- Toshiki Tanaka, Fujitsu
- Brian Tiepen, Adva Optical
- Moonsoo Park, OE-Solution
- YK Park, OE-Solution
- Ian Dedic, Fujitsu Semiconductor
- Patricia Bower, Fujitsu Semiconductor
- Bernd Nebendahl, Keysight Technologies
- Rolf Steiner, Keysight Technologies

PMD Block Diagram – for Parallel SMF (500 m reach)

PMD Block Diagram – for Duplex SMF (2 and 10 km reach)

Transmitter Optical Specifications at TP2

Description	400GBASE-PSM4	400GBASE-FR4	400GBASE-LR4	Unit	Note
Input signaling rate, each lane (range)	103.125 +/-100 ppm			Gb/s	
Output signaling rate, each lane (range)	116.015625 +/-100 ppm			Gb/s	
Lane wavelengths (range)	1260 - 1355 1294.53 to 1296.59			nm	
		1299.02 to 1301.09			
		1303.54 to	1305.63		
		1308.09 to	1310.19		
Average launch power, each lane (max)	1.5	4.0	TBD	dBm	
Average launch power, each lane (min)	-1.5	1.0	2.8	dBm	
Dispersion and MPI penalties, each lane (max)	1.0	1.0	1.0	dB	
RIN, each lane, average (max)	-145	-145	-148	dB/Hz	
Optical return loss tolerance (max)	20	20		dB	
Transmitter reflectance (max)	-26	-26	-26	dB	
Optical modulation index			0.45		
Clipping Ratio (of numerical transmit data)	3.16	3.16	3.16		Tolerance
					TBD*
Cascaded Tx 3 dB electrical upper cutoff frequency (min)	15	15	15	GHz	Informative
Total harmonic distortion (max)	2	2	2	%	TBR
Effective number of bits for DAC	6 (TBR)	6 (TBR)	6 (TBR)	bit	Informative

Additional notes & definitions

* <u>Clipping Ratio</u>: Defined here as the ratio to be maintained, by design, at the numerical generation of data at the transmitter, (i.e. prior to conversion to a voltage).

$$\mathsf{Ratio}_{\mathsf{Clipping}} = \frac{\mathit{Range}_\mathit{DAC}}{2 \cdot \sigma_\mathit{Data}} = \frac{2^{\#bits}}{2 \cdot \sigma_\mathit{Data}} = \frac{2^{(\#bits-1)}}{\sigma_\mathit{Data}}$$

Receiver Optical Specifications at TP3

Description	400GBASE-PSM4 400GBASE-FR4 400GBASE-LR4		Unit	Note	
Input signaling rate, each lane (range)	116.015625 +/-100 ppm			Gb/s	
Output signaling rate, each lane (range)	103.125 +/-100 ppm			Gb/s	
Lane wavelengths (range)	1260 - 1355	55 1294.53 to 1296.59		nm	
		1299.02 to 1301.09			
		1303.54 t	o 1305.63		
		1308.09 t	o 1310.19		
Damage threshold (min)	5.0	7.0		dBm	
Average receive power, each lane (max)	1.5	4.0		dBm	
Average receive power, each lane (min)	-5.5	-4.0	-5.0	dBm	*
Receiver reflectance (max)		-26			
Receiver sensitivity (max)	-6.5	-5		dBm	**
Reference BER	3.3e-3				FEC threshold
Cascaded Rx 3dB electrical upper cutoff frequency (min)	15			GHz	informative
Total harmonic distortion, per component	2 (TBR)			%	informative
Effective number of bits for ADC	5.5 (TBR)			bit	informative

^{*} Measured over fiber with worst-case transmission penalties included at reference BER.

^{**} Measured in back-to-back condition (no dispersion), with typical Tx, at reference BER.

Optical Link Budgets

Description	400GBASE-PSM4	400GBASE-FR4	400GBASE-LR4	Unit	Note
Power budget at maximum TDP	5	6	7.8	dB	
Operating distance	500	2000	10000	m	
Channel insertion loss	4	5	6.3	dB	
Allocation for penalties	1	1	1.5	dB	
Additional insertion loss allowed	0	0	0	dB	

Min / Max average power in dBm for 2 km case

Reach Objective Feasibility

- The proposed reach objectives were verified in terms of sensitivity performance through noise modeling.
- The noise model takes into account the frequency response of all components in the transmission-chain, as well as noise contributions, and develops an SNR spectrum and DMT BER prediction.
- SNR spectrum and BER predictions correlate well with existing hardware measurements using both a DMT test-chip, as well as earlier DAC/ADC DMT implementations.

Reach Objective Feasibility

- Using the parameters specified in the table shown here, the proposed <u>Average receive power range</u> (per lane) was swept for each reach proposal (500m, 2km, 10km).
 - The range was exceeded by 1dB at both extremes to understand the margin.
- Rx PIN-TIA bandwidth was first approximated as a 4th order Bessel (swept over 3dB bandwidths from 17 to 24GHz), then using a target PIN-TIA with 20 GHz bandwidth and peaking near 17 GHz.
 - All modeled TIAs used the IRN profiles shown in following slides.
- For each Rx power, the Tx amplitude was also swept (characterized by extinction ratio at 8 GHz), to characterize the parameter space.

Parameter Values for following Results

Parameter	Value
Data Rate	116 Gb/s
Sampling Rate	58 GS/s
Cyclic Prefix	16 samples
Clipping Ratio	3.16
Laser RIN, average	-145 dB/Hz
Input Referred Noise	Variable with Gain. < 12pA at high gain
DAC Bandwidth	14.5 GHz
Driver Bandwidth	28 GHz
Modulator BW	InP MZM, 27 GHz
PIN-TIA BW	Variable
ADC Bandwidth	19.3 GHz

Measured SNR data with 1310 EML

- Off-the-shelf 100G-LR4 1310nm Transmitter
- Actual measured SNR and BER results used to calibrate the DMT system model

Hardware	28nm DAC/ADC
Samp-Rate	63 GS/s
Data-Rate	116 Gb/s
Source	EML-TOSA DFB
Modulator	EML-TOSA EA
Ext-Ratio (8GHz)	Estimated at 8dB
Receiver	Disco R409
Rx Pwr	0.5 dBm
Meas BER	4.6e-4

- Predicted SNR shows close agreement with measured SNR.
- Worst noise contributor is laser RIN, fol'd by harmonics from EA Modulator non-linearity then ADC & thermal
 - Integrated RIN of this device is -145 with a peak at -138 dB/Hz
 - Dip seen ~7GHz is due to RIN peak.

Tx Used for Modeling: DFB-MZ

- We have demonstrated live-traffic 100G/λ DMT transmission using directly modulated 25G
 DFB lasers, EMLs, and MZMs
 - Traffic and BER performance were shown to be stable over >12 hour test
 - BER as low as 4E-5 demonstrated with MZM in a back-to-back configuration
 - Work showed that any of the three transmitter types could be used in the DMT application
- For the noise modeling in this proposal we have used an InP DFB-MZM frequency response and EO transfer function.

Rx: PIN-TIA

- One improvement required to enable DMT and other higher-order modulation formats for 400GE is lower IRN (tipper_3bs_01a_0914)
- TIA with IRN < 12pA/√Hz for gain > 1 kΩ is possible, and has been used in following results.

^{*} Information in above charts courtesy of Semtech.

500 m Feasibility

2 km Feasibility

10 km Feasibility

Target Receiver

Feasibility Summary

- Executive summary of results:
 - With PIN-TIA bandwidth >= 19 GHz, including the target PIN-TIA, and selecting the proper transmitter amplitude, the receiver sensitivity level can <u>always</u> be achieved below the FEC threshold for each of the reach objectives.
 - DMT is viable for the receive power ranges proposed for each reach objective (500 m, 2 km, 10 km)

Conclusion

- Proposed baselines for 500 m SMF and 2 km SMF based on 4 x 100 Gb/s DMT
- Noise and bandwidth models developed and verified by comparison to live-traffic experiments with several different transmitter types
- Real receiver bandwidth and noise models at different gain settings used in verification analyses
- Modeling supports the proposed link budgets

