Experimental Investigation on Dispersion Tolerance of 8x53.2Gbps NRZ for 400GbE 2km and 10km PMD

Yangjing Wen, Fei Zhu, and Yusheng Bai Huawei Technologies, US R&D Center

Alan McCurdy, Benyuan Zhu, and Robert Lingle, Jr. OFS

Mizuki Shirao, and Keisuke Kojima

Mitsubishi Electric

IEEE802.3bs 400GbE Task Force Berlin Plenary Meeting March, 2015

Contents

- >Introduction
- >Experimental setup
- >Experiment results
 - Eye diagram and optical spectrum
 - Fiber dispersion vs wavelength
 - BER vs optical power
- >Comparison with simulation
- ➤Optical link budget estimation
- **≻Summary**

Introduction

➤ 50Gb/s NRZ considered a promising candidate for 400GbE PMD due to its simplicity, high sensitivity, and high tolerance to MPI:

```
cole_01_0914_smf.pdf; qian_3bs_01_0714.pdf; wen_3bs_01_0914.pdf; kojima_3bs_01a_0115.pdf; stassar_01_1014_smf.pdf
```

- ➤ Chromatic dispersion has been a concern and listed as the big ticket item at January Interim Meeting for 8x50Gbps NRZ PMD.
- Stassar addressed the dispersion requirement for various PMDs at the Feb Ad Hoc Meeting (stassar_01_0215_smf.pdf).
- Shirao presented the worst dispersion penalty for 50Gbps NRZ (kojima_01_0215_smf.pdf).
- ➤ In this contribution, we evaluate dispersion tolerance for 50Gbps NRZ to cover worst dispersion scenarios and address the sensitivity and link budget issue.

Experimental Setup

S21 of Driver + EML (Mitsubishi FU-697SEA-T3M2)

Receiver S21 Response

Eye Diagram & Optical Spectrum

53.2Gbps Eye Diagram

Measured with an Agilent 40G optical module (86116C Opt. 025)

- ER =8.7dB
- Laser wavelength: 1310.4nm

Optical Spectrum

- Operation conditions of EML:
- Laser bias current = 80mA
- Operating temperature: 40 deg C

Dispersion vs Wavelength of Used Fibers

Three spools of fiber used for evaluating dispersion tolerance

•Fiber #1:

25.3km SMF, λ_0 = 1305.4nm

- +11ps/nm dispersion at 1310.4nm
- Fiber #2:

22.2km SMF, λ_0 = 1320 nm

- -19ps/nm dispersion at 1310.4nm
- Fiber #3:

20km-LEAF DCM

- 51ps/nm dispersion at 1310.4nm

Choosing these fibers with various dispersion with respect to 1310.4nm is to cover the worst cases of CD for the entire 8 wavelengths of 8x53.2Gbps

BER vs Average Receiving Optical Power

- EML Sample #1 used
- ER ~ 9.1dB
- 5 tap FFE in Rx

- Negative penalty observed for negative dispersion, positive penalty observed for positive dispersion
- BtB receiver sensitivity is around -14.1dBm at BER@2e-4

Power Penalty vs Dispersion

- EML Sample #1 used
- Power penalty defined at BER@2e-4
- The measured power penalty induced by chromatic dispersion is well below 1dB

Dispersion range

Comparison with Experiment – Simulation Conditions

Parameters	Values	
Format	NRZ	
Baud Rate	53.2 Gbaud/s	
Pattern	SSPR	
Modulator	intensity modulation with chirp	
Tx BW	35GHz with	
Tx S21 shape	4 th order Bessel filter	
Extinction ratio	6 dB	
RIN	-140 dB/Hz	
Rx BW	16GHz	
Rx S21 shape	4 th order Bessel filter	
Rx Responsivity	0.6 A/W	
Rx input noise density	15 pA/sqrt(Hz)	
Equalizer in Rx	5 tap FFE	

Comparison with Simulation - Results

- Sample #2 has a laser wavelength of 1309.7nm
- Sample #2 close to simulation of alpha= +1.0
- Sample #1 close to simulation of alpha= +0.5
- For both evaluated EML samples, dispersion penalty at maximum positive dispersion is well below 1 dB

Link Budget in OMA

Applications	Duplex 2km	Duplex 10km
Number of wavelength	8	
Baud rate	53.2 GBaud/s	53.2 GBaud/s
Operating BER	2e-4	2e-4
ER	≥6dB	
Transmitter output OMA	1.0dBm	3.0dBm
Mux IL	3dB	3dB
Fiber/connector loss (1)	5dB	6.4dB
MPI penalty (2)	0.2dB	0.2dB
Dispersion penalty	0.5dB	1.5dB
DeMux IL	3dB	3dB
Post-DeMux Rx input OMA	-10.7dBm	-11.1dBm
Rx sensitivity (OMA) ⁽³⁾	-12.3dBm	-12.3dBm
Margin	1.6 dB	1.2dB

Any Tx and Rx induced penalty has already been included in the BtB receiver sensitivity test (1) kolesar_3bs_01_0514.pdf;

- (2) wen_3bs_01_0914.pdf, at 30dB MPI
- (3) The receiver sensitivity was measured in average power and has been converted to OMA

Summary

- Experimentally investigated chromatic dispersion tolerance of 8x53.2G NRZ for 400GbE 2km and 10km PMD.
- ➤ The observed power penalty induced by chromatic dispersion is well below 1dB, which is consistent with that in (kojima_01_0215_smf.pdf).
- ➤ Demonstrated sufficient link budget for both 2km and 10km (with 1.2dB extra margin) 400GbE applications.