

Module TX eye measurement method proposal

In support of comment #148

Raj Hegde & Magesh Valliappan IEEE 802.3bs 400 Gb/s Task Force Macau, March 2016

CDAUI-8 C2M Module output specification

- The current spec at TP4 does not allow the pre-cursor component necessary in the module TX to close the link budget
 - Eye measurement is done at the MCB
 - HCB-MCB loss budget is only ~2.5dB to 4.8dB
- An update is needed to include the module TX pre-cursor component
 - Keep the measurement point same as before
 - Define a 'near-end' eye and a 'far-end' eye
- Far-end eye
 - In the post processing phase, include a 'channel' to represent the remainder of the loss budget
 - Update the eye-spec such that the TX would have to provide the desired pre-cursor component
- Near-end eye
 - Represents the short length case
 - Measured and post processed as before

Far-end eye: o/p measurement + post processing setup

- Short channel model (~2.5dB loss at Nyquist/2) from CDAUI-8 is used to represent the MCB trace
- Driver+Pkg representative of a typical module, TX coef. = [-0.1 0.9]
- CDAUI-8 C2C jitter parameters
- Post processing:
 - ~7.5dB channel loss to represent the far-end scenario
 - 4th order Bessel-Thomson low-pass with 33GHz 3dB b/w
 - Search over all CTLE settings to obtain the best eye opening

Far-end eye parameters

Parameter	Value
ESMW	220mUl
Eye Width	250mUl
Eye Height	30mV

Near-end eye parameters

Short channel model (~2.5dB) from CDAUI-8 and CTLE sweep

Parameter	Value
ESMW	265mUl
Eye Width	325mUl
Eye Height	90mV

Summary

- The proposal accommodates the pre-cursor ISI component without explicitly specifying an FIR filter in the module
- Extension of the current TP4 based eye-margin methodology
 - Near-end and far-end specifications defined to cover both ends of the channel loss range.
- Enables a 'C2C capable' receiver to be employed in the host for C2M application

