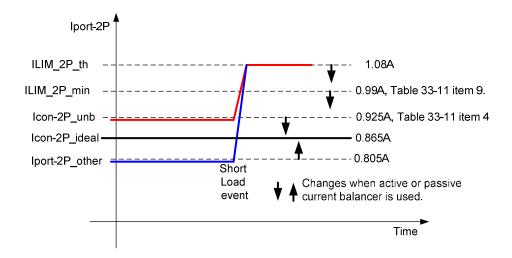
Comment:

Editor Note #2.

"2. The following case needs to be addressed: If PSE is using active or passive pair-to-pair current balancing circuitry, K_Icut may be lower (down to 0.5) per equation TBD."

The accuracy of this comment is addressed in the comment marked ED_2 and the comment ED_2 is updated in this comment as follows:

"2. The following case needs to be addressed: The PSE is allowed to use active or passive pair-to-pair current balancing circuitry and the current spec requirements allow it however we need to address the fact that we can't benefit from the advantages of using passive or active current balancing if we are not allowing PSE to use lower minimum values of ILIM-2P, Icon-2P, Ipeak-2P unb than specified in Table 33-11."


Now the rest of this comment:

The following comment addresses the main issue of Editor Note #2.

- According the current spec we can implement active or passive current balancing. This is not the issue.
- According to the current spec if we build active or passive current balancer and we use the limits of Icon-2P_unb, Ipeak-2P_unb and ILIM-2P we will surely be fine. This is not the issue too.
- The issue is that if we leave that spec as it is, we can't benefit from using active or passive
 current balancer due to the fact that we are not allowed to use lower limits of lcon-2P_unb,
 Ipeak-2P_unb and ILIM-2P (that was planned for the worst case unbalance) due to the
 improved unbalance now. As a result we can't optimize the PSE designs for lower cost as it
 the only reason for using current balancer.
- The fact that we can use ILIM, Icon etc. which doesn't include unbalance effect doesn't help to PSEs that wants to have independent Iport-2P measurements and protection over each pairset (this concept of XXX-2P is all over the spec now).

Example: In Type 4 class 8 ILIM-2P min is 0.99A which includes unbalance effect. Normally PSEs set their ILIM-2P protection to >0.99A per each pairset e.g. 1.08A. It means that the 2nd pair with the lowest current will have much lower current during normal operation: Iport-2P_other= (90W/52V/2 - (0.925A-90W/52V/2)=0.865A-0.0596A=0.805A: So if there is a fault at the pair with the pair with the lowest current, the protection on this pairset will happen only when the pair with the lowest current will get to > 1.08A which is a current difference of 1.08A-0.805A=0.275A. This means that the PSE have to be designed to such conditions, it is not a problem to design it as such however we can relax requirements to PSE if PSE is using active or passive current balancer.

The advantage of using lower ILIM-2P etc. is e.g. reduction of magnetic size etc.

- The current spec allows implementations of active or passive current balancing.
- If we build active or passive current balancer and we use the existing limits of Icon-2P_unb, Ipeak-2P_unb and ILIM-2P we will surely be fine. This is not the issue too.
- With the current spec we can't benefit from using active or passive current balancer due to the fact that we are not allowed to use lower limits of Icon-2P_unb, Ipeak-2P_unb and ILIM-2P (that was planned for the worst case unbalance).
- Using active and passive current balancer allow us to use lower settings of Icon-2P_unb, Ipeak-2P_unb and ILIM-2P and as result we can optimize the PSE designs for lower cost as it is the only reason for using current balancer.
- The fact that we can use ILIM, Icon etc. which doesn't include unbalance effect doesn't help to PSEs that wants to have independent Iport-2P measurements and protection over each pairset (this concept of XXX-2P is all over the spec now).

Proposed Remedy: See next page.

Proposed Remedy:

1. Update the editor note to:

"2. The following case needs to be addressed: The PSE is allowed to use active or passive pair-to-pair current balancing circuitry and the current spec requirements allow it however we need to address the fact that we can't benefit from the advantages of using passive or active current balancing if we are not allowing PSE to use lower minimum values of ILIM-2P, Icon-2P, Ipeak-2P_unb than specified in Table 33-11."