#### **Updated** comment #111 D2.2: 1

- 2 Subject: Equation 33A-4:
- 3 1. Should equation 33A-4 be mandatory or informative?
- 2. Do we need it in 33.3.8.10 or in Annex 33A-4 only? 4
- End-to-end pair to pair resistance unbalance for any PSE+Channel+PD connection is described by the 5
- 6 following equation:
- 7 (1) (U\*Rpse min - Rpse max) +(U\*Rch min - Rch max) +(U\*Rpair pd min - Rpair pd max)=0
- 8 Where U=(1+E2EP2PRunb)/(1-E2EP2PRunb).
- 9 Worst case "U" corresponds to the min/max worst case effective resistance values of Rpse, Rch,
- 10 Rpair PD and maximum PClass PD levels.

## 11

- 12 We can see that PSE PI output common mode effective resistance needs to meet the following to
- 13 guarantee that the worst case unbalance is not exceeded for the worst case PD and Channel effective 14 resistances:
- 15 (2) Rpse max  $\leq$  U\*Rpse min + (U\*Rch min - Rch max) + (U\*Rpair pd min - Rpair pd max)
- This is actually identical to Equation 33-15 in the spec. 16
- 17
- 18 It is clear that PSE must meet this equation to guarantee Icon-2P\_unb is met due to the following 19 reasons:
- a) PSE needs to support all PDs. PSE doesn't know which PD it is going to support and change its 20
- hardware design accordingly that is why PSE has to be designed for the worst case load which is 21
- 22 defined by equation 33-15.
- 23 b) This is the only solution for the system equation (1) for a PSE regardless if PD equation 33A-4 is met 24 or not.
- 25 c) And when PSE is connected to Rload\_min and Rload\_max (also derived from Equation 1) which
- 26 represent channel + worst case PD, it need meet Icon-2P unb in order to external test house to verify compliance with Equation 33-15.
- 27 28
- 29 So far, all is good; the above is covered by D2.2. 30
- Question #1 is if the same concept should apply to the PD i.e. should we mandate to meet Equation 31
- 32 33A-4 or we can satisfied with measuring Icon-2P\_unb and keep Equation 33-4 as a design guidelines
- 33 in Annex 33A-5?
- 34

#### Discussion: (See next page) 35

36 37

- 38 We said already that both PSE and PD must comply with Equation 1 above:
- 39
- 40 (1) (U\*Rpse\_min Rpse\_max) +(U\*Rch\_min Rch\_max) +(U\*Rpair\_pd\_min Rpair\_pd\_max)=0
- 41
- 42 (2) The equation above is always true, however "U" is not constant. For example, it varies with
- channel length and is highly unbalanced for the minimum channel and further unbalance at lower
  load tan Pclass PD. In the worst cases (of combinations of Vport PSE, Pclass PD, Channel
- 45 resistance) the effective resistances do directly correspond to the worst case Icon-2P-unb.
- 46 However, it is possible for Rpair\_pd values to be worse than those in Equation 33A-4 and still meet
- 47 Icon-2P-unb by simply lowering the max power below PClass\_PD. "U" will be worse, but Icon-2P48 unb can still be met.
- 49
- 50 As a result, PD PI input common mode effective resistance need to meet the following *in order to*
- 51 *operate at full PClass\_PD* levels only:
- 52 (3) Rpair\_pd\_max = U\*Rpair\_pd\_min +(U\*Rpse\_min Rpse\_max) +(U\*Rch\_min Rch\_max)
- 53 This is actually identical to Equation 33A-4 in the spec in Annex 33A.5. However at power levels lower
- than Pclass\_PD, PD may use larger ratios of Rpair\_pd\_maxand Rpair\_pd\_min that doesn't meet
- 55 Equation 33A-4 but still meet Icon-2P\_unb! 56
- 57 Now; we know for sure that if PD meets Equation 33A-4 than system equation is solved and PD meets
- 58 unbalance requirements including Icon-2P\_unb at any worst case parameter combinations. *Doe's*
- 59 measuring Icon-2P\_unb is sufficient?
  60
- If Icon-2P-unb is met with the test circuit (which corresponds to the worst case channel and PSE
- ranges), then it has to be sufficient, because it will only improve with better PSE that meets Equation
   33-15 and the channel values.
- 64
- In other words, we need to be sure (by mathematical proof) that PD that meets Icon-2P\_unb by
   definition meets Equation 33A-4 (Rpair PD min and Rpair PD max) when connected to Rsource min
- 67 and Rsource max which is also derived from Equation 1 above. We expect that if Icon-2P-unb is met
- for all worst case PSE+channel combinations, then the most important limit has been met. Otherwise,
- 69 we need to move Equation 33A-4 to 33.3.8.10 that addresses PD pair to pair current unbalance.
- 70 Such mathematical proof is shown in Annex B. The mathematical proof shows:
- A) It is sufficient for the PD to test Icon-2P\_unb when it is loaded with its maximum requested
   Pclass\_PD.
- B) In case of (A), the burden will be on the PD designer to try many sets of Rpair\_PD\_min and
   Rpair\_PD\_max until one set will cause Icon-2P\_unb to be met. Since Annex 33A-5 where
   equation 33A-4 is located is far away from the standard body, it is recommended to move
   Equation 33A-4 as informative design guidelines to the main standard body in clause
   33.3.8.10.

## 78 **Proposed Remedy**:

79

|            | This is not part of the base line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|            | The proposed remedy based on the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|            | 1. No change in Equation 33A-4 status. It is still informative. See Annex A and B for details.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|            | 2. Equation 33A-4 was moved to 33.3.8.10 in order to be accessible to the reader due to its                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|            | importance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|            | 3. Adding introduction part for 33.3.8.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|            | 3. Adding introduction part for 55.5.8.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| ~ ~        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 80         | If the proposed remedy will be accepted, use these modifications for clause 33.3.8.10 and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 81         | 33A.5 instead of the proposed remedy for clause 33.3.8.10 and 33A.5 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| 82         | darshan_01_0117.pdf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| 83         | 33.3.8.10 PD pair-to-pair current unbalance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 84         | This section describes unbalance requirements for Type 3 and Type 4 PDs that operate over 4-pair. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| 85         | contribution of PD PI pair-to-pair effective resistance unbalance to the effective system end to end                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 86         | resistance unbalance, is determined by PD maximum (RPair PD max) and minimum (RPair PD min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| 87         | common mode effective resistance in the powered pairs of same polarity. See Figure 33A-4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 88         | Effective resistances of RPair PD min and RPair PD max include the effects of PD pair to pair                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 89         | voltage difference and the PD PI resistive elements. See definition and measurements in Annex 33A.5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 90         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 91         | PDs that comply with Equation 33-X4 intrinsically meet unbalance requirements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| 92         | -Update equation 33-X4 constants as follows (Updates are due to: Changing 71W to 71.3W, final                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 93         | updates of PD Vdiff to 60mV for Type 3 and Type 4, channel P2PRun changes made for D2.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| 94         | -Update equation 33A-4 from "Rpair_pd_max=" to "0 < Rpair_pd_max ≤ "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 95         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 96         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|            | $0 < R_{Pair\_PD\_max} \leq \begin{cases} 2.170 \times R_{Pair\_PD\_min} + 0.125 & for PD Type 3, Class 5\\ 1.988 \times R_{Pair\_PD\_min} + 0.105 & for PD Type 3, Class 6\\ 1.784 \times R_{Pair\_PD\_min} + 0.080 & for PD Type 4, Class 7\\ 1.727 \times R_{Pair\_PD\_min} + 0.074 & for PD Type 4, Class 8 \end{cases} $ (33-X4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| 97         | $1.988 \times R_{\text{prin}} = 0.105$ for PD Type 3, Class 6 (33-X4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| 5,         | $\left(\begin{array}{c} 0 < R_{pair_{PD_{max}}} \leq \left\{\begin{array}{c} 1.784 \times R_{pair_{PD_{max}}} \\ 1.784 \times R_{pair_{PD_{max$ |  |  |  |
|            | $1.707 \times R_{air_PD_{min}} = 0.000  Jor TD Type 4, Class 7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|            | $\left(1.127\times R_{Pair_PD}\right)_{min}$ +0.074 Joi 1 D Type 4, Class 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| 98         | where                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| 98<br>99   | where<br>RPair PD max is, given RPair PD min, the highest allowable common mode effective resistance in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| 100        | powered pairs of the same polarity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| 101        | RPair PD min is the lower PSE common mode effective resistance in the powered pairs of the same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 102        | polarity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 103        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 104        | Common mode resistance is the effective resistance of the two wires and their components in a pair of the same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| 105        | polarity connected in parallel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 106        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 107<br>108 | Smaller constants $\alpha$ and $\beta$ in the equation RPair_PD_max = $\alpha \times \text{RPair}_{PD_min} + \beta$ ensure that ICon-2P-unb is not exceeded for PD power consumption above the values in Table 33–26.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| 108        | exceeded for PD power consumption above the values in Table 33–26.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 110        | Figure 33-X1 illustrates the relationship between Rpair PD max and Rpair PD min effective resistances at the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| 111        | PD PI as specified by Equation 33-X4 and the rest of the end to end pair to pair effective resistance components.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| 112        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 113        | Under all operating states, single-signature PDs assigned to Class 5 or higher shall not exceed ICon-2P-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| 114        | unb for longer than TCUT-2P min as defined in Table 33-18 on any pair when PD PI pairs of the same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 115        | polarity are connected to all possible common source voltages in the range of VPort_PSE-2P through                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 116        | two common mode resistances, Rsource_min and Rsource_max, where Rsource_max = 1.186 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| 117        | Rsource_min, Rsource_max=(-0.030*Rsource_min+1.324) * Rsource_min, and Rsource_min are all possible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| 118        | resistances in the range of $\frac{0.168 \ 0.145 \ \Omega}{0.145 \ \Omega}$ to $\frac{5.28 \ 5.470 \ \Omega}{2.000 \ \Omega}$ as shown in Figure 33–37.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| 119        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |

Darshan Yair January 2017 Rev005

- 120 Under all operating states, dual-signature PDs shall not exceed ICon-2P as defined in Equation (33–8)
- 121 for lon-ger than TCUT-2P min as defined in Table 33–18 on any pair when PD PI pairs of the same
- polarity are connected to all possible common source voltage in the range of VPort\_PSE-2P through
- two common mode resistances, Rsource\_min and Rsource\_max, where
- 124 Rsource\_max= $(-0.030*Rsource_min+1.324)*Rsource_min, Rsource_max = 1.186*Rsource_min, and$
- 125 Rsource\_min are all possible resistances in the range of  $0.145 \ 0.168 \ \Omega$  to  $5.470 \ 5.28 \ \Omega$  as shown in 126 Figure 33–37.
- 126 127
- 128 Rsource\_min and Rsource\_max represent the Vin source common mode effective resistance that
- 129 consists of the PSE PI components (RPSE\_min and RPSE\_max as specified in 33.2.8.5.1,
- 130 VPort\_PSE\_diff as specified in Table 33–18, the channel resistance, and influence of RPair\_PD\_min
- and RPair\_PD\_max specified in Annex 33A.5 as function of total system end-to-end unbalance).
- 132 Common mode effective resistance is the resistance of two con-ductors of the same pair and their other
- components, which form Rsource, connected in parallel including the effect of the total system (PSE)
- 134 <u>and PD</u> pair to pair voltage-difference. IA and IB are the pair currents of pairs with the same polarity. 135  $R_{PAIR PD min}$ ,  $R_{PAIR PD max}$  ensures that along with any other parts of the system, i.e. channel (cables and
- 135  $\underline{R_{PAIR_{PD_{min}}}}, \underline{R_{PAIR_{PD_{max}}}}$  ensures that along with any other parts of the system, i.e. channel (cables and connectors) and the PSE, the maximum pair current including unbalance does not exceed ICon-2P-unb
- <u>connectors) and the FSE, the maximum pair current including unbalance does not exceed (Con-2F</u>
   a defined in Table 22, 19 desine neurol encoding and different field and a set of the s
- **137** <u>as defined in Table 33–18 during normal operating conditions. See Annex 33A.5.</u>

138

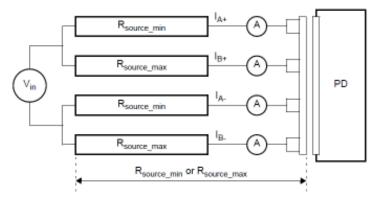



Figure 33–37—I<sub>Con-2P</sub> and I<sub>Con-2P-unb</sub> evaluation model

139 140

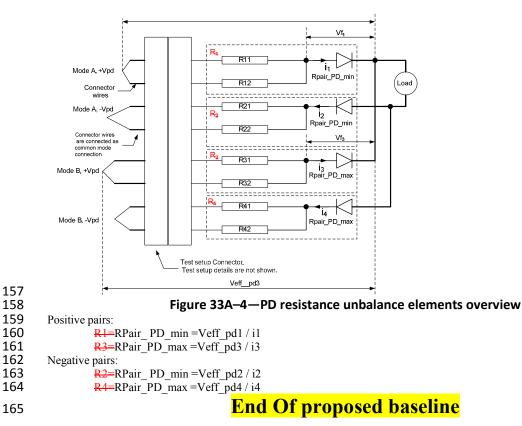
- 141 NOTE 1—Rsource includes resistance Rcon which is the connection resistance at the PD. The 142 maximum recommended Rcon value is  $0.02 \Omega$ .
- 143 NOTE 2—The pairset current limits should also be met when Rsource\_max and Rsource\_min are
- swapped between pairs of the same polarity.
- 145

#### 146 **33A.5 PD PI pair-to-pair current unbalance requirements**

#### 147 Delete Equation 33A-4 and the following text:

148 The following design guide lines may be implemented to ensure PD PI pair to pair current unbalance

149 requirements are met:


151 RPair\_PD\_max and RPair\_PD\_min represent PD common mode input effective resistance of pairs of the same

- polarity. Common mode effective resistance is the resistance of two conductors of the same pair and their other
- components connected in parallel including the effect of PD pair-to-pair voltage difference of pairs with the same

polarity (e.g. Vf1-Vf3). The common mode effective resistance Rn is the measured voltage Veff\_pd\_n, divided by

the current through the path as described below and as shown in the example in Figure 33A-4, where *n* is the pair





#### **Annex A: Derivation of E2EP2PRunb system equations** 166

)

167 System End to End Pair to Pair Resistance Unbalance (PSE, Channel and PD):

168  
169 (1) 
$$E2EP2PRunb = \frac{(Rpse_{max} - Rpse_{min}) + (Rch_{max} - Rch_{min}) + (R_{pairPDmax} - R_{pairPDmin})}{(Rpse_{max} + Rpse_{min}) + (Rch_{max} + Rch_{min}) + (R_{pairPDmax} + R_{pairPDmin})}$$

170 
$$(Rpse_{max} + Rpse_{min}) + (Rch_{max} + Rch_{min})$$

$$\frac{1}{172}$$

173 (2) 
$$E2EP2PRunb = \frac{\left(\sum_{R_{max}} - \sum_{R_{min}}\right)}{\left(\sum_{R_{max}} + \sum_{R_{min}}\right)}$$

175 Opening and solving (2) in terms of Rmax/Rmin ratio and E2EP2PRunb:

$$\sum_{R_{\text{max}}} -\sum_{R_{\text{min}}} = E2EP2PRunb \cdot \left(\sum_{R_{\text{max}}} +\sum_{R_{\text{min}}}\right)$$

178 
$$\sum_{R_{\text{max}}} -\sum_{R_{\text{min}}} = E2EP2PRunb \cdot \sum_{R_{\text{max}}} + E2EP2PRunb \cdot \sum_{R_{\text{min}}} \sum_{R_{min}} \sum_{R_$$

179 
$$\sum_{R_{\text{max}}} -E2EP2PRunb \cdot \sum_{R_{\text{max}}} = E2EP2PRunb \cdot \sum_{R_{\text{min}}} + \sum_{R_{min}} + \sum_{R_{\text{min}}} + \sum_{R_{min}} + \sum_{R_{min}} + \sum_{R_{min}} + \sum_{R_{min}} + \sum_{R_{m$$

$$(1 - E2EP2PRunb) \cdot \sum_{R_{\text{max}}} = (1 + E2EP2PRunb) \cdot \sum_{R_{\text{min}}}$$

181 (3) 
$$\frac{\sum_{R_{\text{max}}}}{\sum_{R_{\text{min}}}} = \frac{(1 + E2EP2PRunb)}{(1 - E2EP2PRunb)} = U$$

182 As a result from (3):

183 (4) 
$$\frac{\sum_{R_{\text{max}}}}{\sum_{R_{\text{min}}}} = u$$

184 And we get the general system unbalance equation:

185 (5) 
$$u \cdot \sum_{R_{\min}} - \sum_{R_{\max}} = 0$$

- 186 The general system unbalance equation (5) can be expended back by expressing all its components:
- 187 (6) U\*Rpse\_min + U\*Rch\_min + U\*Rpair\_pd\_min - Rpse\_max - Rch\_max - Rpair\_pd\_max=0
- Deriving from (76) the PSE PI equation: 188
- 189 From (6) we can solve for Rpse max:

190 Rpse\_max =U\*Rpse\_min +U\*Rch\_min + U\*Rpair\_pd\_min - Rch\_max - Rpair\_pd\_max (7)

(8) 191 Rpse\_max =U\*Rpse\_min + $\beta$ 1 (This is the form of Equation 33-15 in D2.2)

#### 192 β1 = U\*Rch\_min + U\*Rpair\_pd\_min - Rch\_max - Rpair\_pd\_max

193 Additional information:

200

201

202

- 194 Equation 8 can be presented as function of Rload\_min and Rload\_max during testing for compliance which makes it clear why PSE 1. 195 cannot be tested only for Icon-2P\_unb by only connected it to Rload\_min and Rload\_max.
- 196 2. PSE must be designed for the worst case unbalance since it needs to support all PDs (PDs on the other hand need to be designed only 197 for their required Pclass\_PD or lower power).

198 From (7) Rpse\_max =U\*Rpse\_min +U\*(Rch\_min + Rpair\_pd\_min) – (Rch\_max + Rpair\_pd\_max) 199

- By definition:
  - Rload\_max =Rch\_max+Rpair\_PD\_max
- Rload\_min =Rch\_min+Rpair\_PD\_min
- (9) Rpse\_max =U\*R\_pse\_min + U\* Rload\_min Rload\_max

Darshan Yair January 2017 Rev005

Page 6 of 8

## 203 Deriving from (6) the PD PI equation:

- 204 (6) U\*Rpse\_min + U\*Rch\_min + U\*Rpair\_pd\_min Rpse\_max Rch\_max Rpair\_pd\_max=0
- 205 From (6) we can solve for Rpair\_PD\_max:
- 206 (10) Rpair\_pd\_max= U\*Rpair\_pd\_min + U\*Rpse\_min + U\*Rch\_min Rpse\_max Rch\_max
- 207 (11) Rpair\_pd\_max= U\*Rpair\_pd\_min +  $\beta$ 2 (This is the form of Equation 33A-4 in D2.2)
- 208  $\beta 2 = U^*Rpse min + U^*Rch min Rpse max Rch max$

Additional information:

- 210 1. Equation 10 can be presented as function of Rsource\_min and Rsource\_max during testing for compliance.
- 2. PD must be designed for the worst case unbalance per its required Pclass\_PD or lower power.
- 212 3. At this point, it is not clear if it is sufficient for the PD to meet Icon-2P\_unb and is equivalent to meet Equation 10.
- 4. It is clear that if the PD meets Equation 10, then it will meet Icon\_2P\_unb by definition since Equation 10 is a complete solution of system equation (6).
- 215 5. See Annex B for derivation of mathematical proof that for a PD it is sufficient to meet Icon\_2P\_unb.
- 216 (10) Rpair\_pd\_max= U\*Rpair\_pd\_min + U\*Rpse\_min + U\*Rch\_min Rpse\_max Rch\_max
   217 By definition:
   218 Rsource\_max = Rpse\_max + Rch\_max
   219 Rsource min = Rpse\_min + Rch\_min
- 219
   Rsource\_min = Rpse\_min + Rch\_min

   220
   (12)
   Rpair\_pd\_max= U\*Rpair\_pd\_min + U\* Rsource\_min Rsource\_max

### 221 Deriving Rload\_min and Rload\_max when PSE is tested for compliance

- 222 From (6): U\*Rpse\_min + U\*Rch\_min + U\*Rpair\_pd\_min Rpse\_max Rch\_max Rpair\_pd\_max=0
- 223 Finding Rload\_max and Rload\_min as function of the other system parameters:
- By definition the PSE is loaded by:
- 225 Rload\_max =Rch\_max+Rpair\_PD\_max
- 226 Rload\_min =Rch\_min+Rpair\_PD\_min
- As a result from (6):
- 228 (7) Rload\_max = Rch\_max+ Rpair\_pd\_max= U\*Rch\_min + U\*Rpair\_pd\_min +U\*Rpse\_min Rpse\_max

#### 229 (8) Rload\_max = U\*Rload\_min + (U\*Rpse\_min - Rpse\_max)

- 230 The values of Rload max and Rload min (Table 33-B1 in D2.2) are measured by simulation and are
- identical to the computed Rload min and Rload max in equation 8.

#### 232 Deriving Rsource\_min and Rsource\_max when PD is tested for compliance

- 233 From (6): U\*Rpse\_min + U\*Rch\_min + U\*Rpair\_pd\_min Rpse\_max Rch\_max Rpair\_pd\_max=0
- 234 Finding Rsource\_max and Rsource\_min as function of the other system parameters:
- 235 By definition the PD is connected to the following source resistance:
- 236 Rsource\_max = Rpse\_max + Rch\_max
- 237 Rsource\_min = Rpse\_min + Rch\_min
- As a result from (6):
- 239 (9) Rsource\_max = Rpse\_max + Rch\_max = U\*Rpse\_min + U\*Rch\_min + (U\*Rpair\_pd\_min Rpair\_pd\_max)

#### 240 \_(10) Rsource\_max = U\*Rsource\_min +(U\*Rpair\_pd\_min - Rpair\_pd\_max)

- 241 The values of Rsource max and Rsource min (Clause 33.3.8.10) are measured by simulation and are
- identical to the computed Rsource\_min and Rsource\_max in Equation 9.

Equation 33A-4: Do we need it in 33.3.8.10 or in the Annex?

Darshan Yair January 2017 Rev005

# Annex B - Does it is sufficient for a PD to meet Icon-2P\_unb instead of meeting Rpair\_PD\_min and Rpair\_PD\_max equations?

- 245

246 From System End to End Pair to Pair Resistance Unbalance (PSE, Channel and PD) equation in Annex A:

| 249 $(Rpse_{max} + Rpse_{min}) + (Rch_{max} + Rch_{min}) + (R_{pairPD max} + R_{pairPD min})$ | 247<br>248 | (1) | $E2EP2PRunb = \frac{(Rpse_{max} - Rpse_{min}) + (Rch_{max} - Rch_{min}) + (R_{pairPD max} - R_{pairPD max})}{(R_{pairPD max} - R_{pairPD max})}$ |
|-----------------------------------------------------------------------------------------------|------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                               | -          | (1) | $E2EF2FRund = \frac{1}{(Rnse_+ + Rnse_+) + (Rch_+ + Rch_+) + (R_{ran} + R_{ran})}$                                                               |
|                                                                                               | 250        |     | $(\Gamma \rho s e_{max} + \Gamma \rho s e_{min}) + (\Gamma e m_{max} + \Gamma e m_{min}) + (\Gamma e_{pairPD max} + \Gamma e_{pairPD min})$      |

251 The pair with the maximum current is Imax=Icon-2P\_unb and the pair with minimum current is Imin.

252 The total current of two pairs of the same polarity is It=Imax+Imin.

- 253 The current difference between Imax and Imin is Idiff=Imax-Imin=E2EP2PRunb\*It.
- 254 Imax=0.5\*It+0.5\*Idiff
- 255 Imin=0.5\*It-0.5\*Idiff
- 256 As a result: 257

#### 258 (2) Icon-2P\_unb=0.5\*It+0.5\*It\*E2EP2PRunb=0.5\*It\*(1+E2EP2PRunb) 259

260 Combining (1) and (2):

262 Icon-2P\_unb=0.5\*It\*(1+E2EP2PRunb)=

263 264

261

266

269

271

272

274

275

267

268 Due to the fact that:

Icon-2P\_unb is known (measured)

270 And

(3)

(2) Rpse\_min and Rpse\_max are defined by Equation 33-15 in the spec or in equation (8) in Annex A and are known.

 $Icon - 2P\_unb = 0.5 \cdot \text{It} \cdot \left(1 + \frac{(Rpse_{\max} - Rpse_{\min}) + (Rch_{\max} - Rch_{\min}) + (R_{pairPD\max} - R_{pairPD\max})}{(Rpse_{\max} + Rpse_{\min}) + (Rch_{\max} + Rch_{\min}) + (R_{pairPD\max} + R_{pairPD\min})}\right)$ 

273 And

- (3) Rch\_min and Rch\_max are known (defined together with Rpse\_min and Rpse\_max known as Rsource\_min and Rsource\_max) and are known.
- We can find by trial and error the values of Rpair\_PD\_min and Rpair\_PD\_max that solve Equation (3).
  As a result, Equation (3) can be solved completely by either measuring Icon-2P\_unb or by compliance to
- 279 equation 33A-4 that defined Rpair\_PD\_min and Rpair\_PD\_max.
- The only problem with the approach of measuring Icon-2P\_unb is that the PD designer will need to guess what
  should be Rpair\_PD\_min and Rpair\_PD\_max in order to guaranteed meeting Icon-2P-unb while designing
  directly with Equation 33A-4 is cleaner and faster.

## 284 **Recommendations**:

- 285 C) For the PD section, it is sufficient to measure Icon-2P\_unb which is equivalent to meet Rpair\_PD\_min
   286 and Rpair\_PD\_max.
- D) Designing a PD without using Equation 33A-4 will be time consuming job due to the fact that the designer will have to test many Rpair\_PD\_min and Rpair\_PD\_max values combination until he will identify which pair of values guarantee meeting Icon-2P\_unb.
- 290 E) Since Annex 33A-5 where equation 33A-4 is located is far away from the standard body, it is
   291 recommended to move Equation 33A-4 as informative design guidelines to the main standard body in
   292 clause 33.3.8.10.
   293