SPI/UL Cable Heating Study

AUTHOR-FRED DAWSON THE CHEMOURS COMPANY NEC PANEL 16 PRINCIPAL MEMBER

Overview

- -Increasing power demands
- -Increasing power creates a potential problem
- -The National Electrical Code (NEC) controls installations
- -Where does the NEC apply
- -Installations with high cable loading
- -The problem
- -A solution
- -SPI/UL Project
- -Some initial findings

Increasing Power Demands

- -Providing power over communications cabling is a rapidly growing area of the industry
- -Formation of IEEE 802.3bt Task Force

Current up to 1 amp/pair

Power potentially up to 100 watts

-Other powering schemes

HDBaseT (PoH) potentially up to 200 watts

Other proprietary powering systems

Increasing Power Creates a Potential Concern

-Heat

- Dissipation decreases with the number of cables grouped together
- Smaller wire gauges generally produce more heat
- Raceway (conduit) selection and fill ratio can affect heat dissipation

The NEC Controls Installation

- -TIA and other standards as well as manufacturers warranties provide guidance on installation
- -The NEC (National Electrical Code) is law where it is adopted
- Installations are based on the requirements of the NEC
- Installations are inspected based on the requirements of the NEC
- -The NEC controls copper communications/data cabling in two primary places
 - Article 725 Class1, Class 2 and Class 3 Remote-control, Signaling and Power Limited Circuits
 - Chapter 8 Communications Systems
- -The NEC does not have any specific provisions for powering of communications equipment
 - Most applications fall under Article 725 Class 2 Power Limited Circuits
 - Most communications applications have no guidance. Most AHJ's will reference Article 725 as the applications are similar

NEC Article 725

- -Class 2 Power Limited Circuits have the following limits from Table 11(B)
- Max 100 VA
- Max current =1.67 amps
- -Article 310.15(3) Temperature Limitation of Conductors.
- No conductor shall be used in such a manner that its operating temperature exceeds that designated for the type of insulated conductor involved.
- -Listed information technology equipment limited-power circuits references UL 60950-1
- -UL interpretation of UL 609050-1
- Up to 100 watts per circuit allowable
- Up to 400 watts possible with 4 pair twisted pair cable.

Where does the NEC apply

Installations with high cable loading

Installations with high cable loading

The Problem

- -The NEC has no guidelines for powering over communications cabling as it is currently being implemented
- -Many existing cabling installations aren't designed to manage the heat from higher power levels
- -The potential exists for cable overheating with:
- Previously installed cabling plants when higher (allowable) currents or power is used by newly installed higher power devices
- New installations that don't make provision for heating during installation
- -The overheating of cables is a safety concern for the NEC

A Solution

-Provide a solution before someone else does

- -Make changes to the NEC to provide guidance on the safe application of powering over communications cables
- SPI submitted a number of PI's to enable powering over communications cabling in Articles 725 and 840 and to supplement existing ampacity tables
- Data is needed to support the PI's
- The SPI/UL study was initiated to provide data to support and optimize the PI's
- -The PI's specifically provide for the use of existing and newly installed Category cable
- -One PI proposes a listed and labeled cable that can be used for most applications without concern
- This may have some restrictions

SPI/UL Project

- -SPI manages the study at UL
- -Most communications cabling manufacturers were approached to participate in the study
- -All members of CCCA (Communications Cabling and Connectivity Association) were invited to join the study.
- -Phase 1 of the project is developing data to support the SPI PI's that enable the safe use of existing and new installations of powered communications cabling within the NEC

Some Initial Findings

Initial findings from Phase 1 as of mid June

- Larger bundles get hotter with less current applied
- Enclosed cables get hotter
- •Cables exceed 60°C at current levels well below that permitted by the NEC Class 2 tables
- •Cable failures occurred at current levels well below that permitted by the NEC Class 2 tables
- •In some configurations, cable failures occurred at current levels permitted by UL60950-1 (1.3 amperes) and even at the lower current used by high Power Source Modules (1 ampere)