IEEE P802.3bt - July 2015 Plenary

### IEEE P802.3bt PSE State Diagram Update

Dan Dove, DNS for LTC

July 10, 2015



# The Challenge

- The case of "dual PSE with dual signature PD" has a potential to exponentially increase the number of states and transitions in the state diagram.
  - Previous examination of the impact of adding connection check into the DO DETECTION state showed substantial expansion of transitions. Did not even include impact of dual-PSE w/dual-sig-PD.
- To simplify the diagram, and allow the widest range of implementation, I am taking the approach of including two independent state machines defined as capable of operating simultaneously.
- This dramatically simplifies the problem, allowing the existing PSE State Diagram to become "Pair Set Control State Diagram" and then adding a layer above it to decide which pse\_alt to use.
- For single-channel PSEs and PDs, the state diagram follows existing design with minor modifications (variable name changes)
- For dual-channel PSEs and dual-sig PDs, it enables two state machines to run
  pretty much independently of each other. This enables dual-dual configurations,
  and also dual-single configurations.
- For Type 1 and Type 2 PSE fallback, the PSE host can simply disable Type 3 and Type 4 PSE State Machine and enable the Type 1 and Type 2 PSE State Machine using the "Ubiquitous Management Entity" or it may choose to power Type 1 and Type 2 PSEs using the Type 3 and Type 4 PSE State Machine.





Note: For dual capable PSEs with dual-signature PDs, this diagram indicates the PSE will operate as two distinct Pair\_Set\_Control state machines with distinct variables for each.













### **Connection Check & Detection**

The goal is to allow the widest range of implementation possible.

One can capture portions of data used for the "Detection" function during Connection Check and store them, then later when operating within the PI Control state machine, use that data in conjunction with other data captured during do\_detection to complete the detection process. This would potentially speed up the process and ensures that a robust detection is completed no longer before power is applied than the current Type 1 and Type 2 state diagram.

#### OR

One can perform Connection Check and disregard the data captured after the decision is made to exit that state, and then when entering the DETECTION state, perform an existing do\_detection function as currently implemented.

The former would be faster and reduce the number of steps required to complete detection.



IEEE P802.3bt - July 2015 Plenary

July 10, 201

## Example Text for PD\_Check

• Add new function do\_PD\_check as follows:

do\_PD\_check

- This function is to be used only for Type 3 and Type 4 PSEs and works in conjunction with connection check defined in Section 33.2.5.0 and determines whether a PD can accept power over a single alternative PI configuration or both at the same time. This function returns the following variables:
- PD\_alt: This variable indicates the type of PD signature is connected to the PI, with respect to 4-pair operation.

Values:

A: The PSE has determined PD appears capable of accepting power only on Alt-A. B: The PSE has determined PD appears capable of accepting power only on Alt-B. Both: The PSE has determined PD appears capable of accepting power on Alt-A and Alt-B Invalid: The PD\_check function has not determined a valid value.

July 10, 2015

### **Remaining Work**

- Define the new variables and function required to make the decision for • operating Pair\_Set\_Control properly
  - PSE\_dual\_capable:
    - True PSE is capable of operating on two PI instances simultaneously
    - False PSE is capable of operating on one PI instance
  - mr\_ps\_enable:
    - enable Pair Set Control state machine is enabled
    - disable Pair Set Control state machine is disabled
  - PD\_alt:
    - A PD appears capable of accepting power on Alt–A
    - B PD appears capable of accepting power on Alt-B
    - Both PD appears capable of accepting power on Alt-A and Alt-B
- Review the overall operation and confirm that it behaves as intended •
- Identify if there are any conditions on a dual-PSE to dual-sig-PD configuration that would require both PI instances to return to the toplevel diagram
  - Equivalent to global "mr\_pse\_enable = disable"
- •
- Incorporate appropriate text changes
  Could deprecate need for 4PID text/variables.
- Incorporate FrameMaker version of state diagrams. •

IEEE P802.3bt - July 2015 Plenary

### Q&A

