Comment (Clause 33.2.5.9 Page 66 line 39) Jean address it

The variable class_4PID_mult_events_sec is used in figure 33-21 (Figure 33-21 - Type 3 and Type 4 PSE
dual-signature classification state diagram on the Primary-Secondary Alternative) but is not defined.

[notes:
1. The typo Secondary instead of Primary is addressed in another comment
2. The variable class_4PID_mult_events_sec is missing also in the updated SM in
Picard_03_0116.pdf]

Suggested Remedy

Add at line 39 the following Text:
class 4PID mult events_sec
A variable indicating if the PSE uses the method consisting in generating 3 class events to deter-
mine if the dual signature PD is a candidate for 4-pair power.
Values:
FALSE: the PSE does not need to generate 3 class events to determine if the PD is a
candidate for 4-pair power.
TRUE: the PSE generates at least 3 class events to determine if the PD is a candidate for 4-
pair power.

PSE and PD state machine comments and baseline. Rev 001 Page 1 of 8

Comment (33.2.5.11 page 78 line 7, Figure 33-15)

_condifian *
= anabka}

IDLE

SE
SE
FALSE
FALSE

T
FALSE

ve I= both) THEM
attarnative

nad

—

(mr_pse_snable = foma_power)
lerror_condifon *

lovid_det_pri + short_det_pr) *
Wowld_dat_sec + shart_dat_sec)

v

TEST_MODE

gism = FALSE

alt_pr =a

IF (mr_force par pri) THEM
alt_pr_pwrd = TRLUE

END

alt_sec pwrd = TRLE
EMD

IF {mr_forca_pwr_sac) THEM

{mi_pse enable = force_powen) anable

* (ovid_det_pri + short_det_pi)

* jovid_det_sec +
short_dat_sec)

TEST ERROR PRI | ———

mr_pse_enable =

{mr_pse_enabla = forca_power)

The input to TEST_MODE is incorrect since it is not allow to test each pairset individually.

In addition, overload is optional.

(mr_pse_enable = force_power) *lerror_condition *!(ovld_det_pri + short_det_pri) *I(ovid_det_sec +

short_det_sec)

Suggested Remedy.

(mr_pse_enable = force_power) *lerror_condition *[!(ovld_det_pri + short_det_pri) + !(ovid_det sec +

short_det_sec)]

[The issue of overload is optional is addressed in separate comment.]

PSE and PD state machine comments and baseline. Rev 001

Page 2 of 8

Comment (clause 33.2.5.12, page 80 line 34, Figure 33-15)
[Updates to comment #202]

{tinruét\:p_n'_'timer_dSné * | SeL_parameter_type |
(lpwr_app_pri + ucTt ¢
(lpart2ppi 2 linnuan-ze)) + pse_dI
tinrush_sec_timer_done * POWER_ON lpse_d
(!pwr_app_sec +
(lPartzPses = linmsh-2P)))
IF (mr_pse_alternative = both) THEN
IF ({(PD_4pair_cand = 1) + P
(mr_pse_ss_mode = 1)) THEN
alt_pr_pwrd <= TRUE
alt_sec_pwrd <= TRUE
ELSE
glt_pri_pwid «— TRUE

att_sec pwrd <= FALSE
END
END

short_det_pri +

‘ short_det_sec +
ovd_det_pr +

ovid_det_sec +

option_vport_iim power_not_available *
v # Ishort_det_pri * Ishort_det_se
lovld_det pr * lovd_det_sec
ERROR_DELAY Itmpdo_timer_done * loption_
start ted _timer

alt_pri_pwrd <= FALSE
alt_sec_pwrd < FALSE
T

In the exit from POWER_ON to ERROR_DELAY Turning off the power due to overload is optional and not
mandatory. According to the state machine it is mandatory.
The current text is: short_det_pri + short_det_sec + ovld_det_pri + ovld_det_sec + option_vport_lim

Suggested Remedy:
Task force to discuss the following 3 options:
Option 1:
[If we remove: + ovld_det_pri + ovld_det_sec it will fix the problem. The text outside the state machine
(in 33.2.8.6 Overload current) allows shutting of the power in case of overload”
So if state machine have the priority to set the requirements, the text will clarify the optional features.
The same is correct for legacy state machine in Figure 33-13 page 63 line 51]
1. Change the text to:

short_det_pri + short_det_sec + option_vport_lim

[Consider to apply the concept of this option for Type 1 and 2 SM.]

2. Apply the same solution to legacy state machine in Figure 33-13 page 63 line 51:
Change to: short_detected+ option_vport_lim
[it doesn’t considered changing legacy since the feature is optional]

PSE and PD state machine comments and baseline. Rev 001 Page 3 of 8

Option 2:
1. To add to the list of Type 3, 4 variables the variables option_ovld_pri and option_ovld_sec with the

following values:
option_ovld_pri
A variable that controls the circuitry that the PSE Primary Alternative uses to go to ERROR_DELAY state in
case of overload conditions.
Values: FALSE: The PSE is not turning off the Primary Alternative under overload conditions.
TRUE: The PSE is turning off the Primary Alternative under overload conditions.

option_ovid_sec
A variable that controls the circuitry that the PSE Secondary Alternative uses to go to ERROR_DELAY in
case of overload conditions.
Values: FALSE: The PSE is not turning off the Secondary Alternative under overload conditions.
TRUE: The PSE is turning off the Secondary Alternative under overload conditions.

1.1 Change the list of conditions to:

short_det_pri + short_det_sec + option_ovld_pri*ovld_det_pri + option_ovld _sec *ovld_det_sec +
option_vport_lim

[Consider to apply the concept of this option for Type 1 and 2 SM.]

2. Update the legacy state machine in Figure 33-13 page 63 line 51:

2.1 To add to the list of Type 1, 2 variables the variable option_ovld with the following values:
option_ovld A variable that controls the circuitry that the PSE uses to go to ERROR_DELAY state in case
of overload conditions.
Values: FALSE: The PSE is not turning off the power under overload conditions.

TRUE: The PSE is turning off the power under overload conditions.

2.2 Change the list of conditions to:
short_detected+ option_ovld *ovld_detected + option_vport_lim

Option 3:

To keep the state machine as it is and to add the following text at the beginning of the state machine
clause:

"”State machine has priority over text unless a waver is explicitly specified.” or equivalent wording.
[This will allow simplifications of state machine description in many cases including PD section.]

PSE and PD state machine comments and baseline. Rev 001 Page 4 of 8

Comment (33.2.5.12, page 85 line 22, Figure 33-19):

[Updates to comment #200]
[This comment addresses comment #181 as well.]

The objective of this comment is to allow PSE to do class reset any time within Tpon to generate 1* classification
sequence to do some testing such:
a) Checking unbalance with classification voltage
b) In addition to other ways to know if single-signature PD is 4-pairs capable i.e. the 4PID check, we can
positively know it by finding the PD class code by generating 3 classifications events and if there just
power for Type 1 the PSE can redo classification by issuing one class event.
Allowing doing class reset during Tpon doesn't supported in Figure 33-19 as it does in dual-signature
classification state diagram in figures 33-20 and 33-21.
In addition, there is a need to allow generate 1 class event if PSE knows that the power available in Type 1 without
the need to know what is the PD requested power.
The above was meant to increase PSE design flexibility.

Suggested Remedy:

To add the following text to classification section page 97 line 30:

"PSE is allowed to reset the PD classification during class event sequence and redo its
classification sequence at any time between the end of detection and POWER_UP time
duration (Tpon) without redoing connection check and detection."

or equivalent wording.

To add the following Editor Notes:

"Editor Note: To add in Figure 33-19 the ability to reset classification after at least 1 classification events with long
first class event or with short first class event without doing connection check and detection again when Tpon is
still not done."

"Editor Note: To add in Figure 33-19 the ability generate 1 class event if PSE knows that the power available is
Type 1 without the need to know what is the PD requested power."

PSE and PD state machine comments and baseline. Rev 001 Page 5 of 8

Comment (33.2.5.12, page 85 line 22, Figure 33-15)

|ACOD_ 1SV 1y ‘ i ime1_timer_done
g
tde2_timer_done * (mr_pd_class _deteded=temp_var) * (dass_num_events=2) CLASS_EV3
do_dassification
< - : start tde3_timer
tde3_timer_done * [(mr_pd_class detected=4) + [(mr_pd_class deteded=>0) * (pse_avail_pwr=5)] ==

tcle3_timer_done * [(mr_pd_dass_detected!=4) * [(mr_pd_class_detected=0) + pse_avail_pwr=5) |

MARK_EV3

\. : TO temp_var <= mr_pd_dass_detected
MARK_EV_LAST gtz_rtn?:z:;‘l_timer

tme1_timer_done

In the exit from CLASS_EV3 to MARK_EV_LAST:

tcle3_timer_done * [(mr_pd_class_detected=4) + [(mr_pd_class_detected>0) * (pse_avail_pwr=5)]]

The statement is true if:

a) tcle3_timer_done *(mr_pd_class_detected=4) +

b) tcle3_timer_done *(mr_pd_class_detected>0) * (pse_avail_pwr=5)

According to Table 33-11, for pse_avail_pwr=5, the number of classification events is 4 and this exist is
coming from CLASS_EV3.

The suggested fix is:

The statement is true if:

tcle3_timer_done *(mr_pd_class_detected=4) +
tcle3_timer_done *(mr_pd_class_detected>0) * (pse_avail_pwr=4)

Suggested Remedy

tcle3_timer_done *(mr_pd_class_detected=4) +
tcle3_timer_done *(mr_pd_class_detected>0) * (pse_avail_pwr=4)=

=tcle3_timer_done * [(mr_pd_class_detected=4) + [(mr_pd_class_detected>0) * (pse_avail_pwr=4)]]

PSE and PD state machine comments and baseline. Rev 001 Page 6 of 8

Comment (clause 33.2.5.12, page 86 line 10, , Figure 33-20)

[Updates to comment #231]

CLASS_EV1_LCE_PRI

do_dasslication_pd
start loe_tirmer_pd

e tirmer_pr_done * | Idass 4PID mull_events pd ©
[(mr_pd_class detected_prd < 4) + (class_num_evenls_pi= 1)]+
| {mr_pd_dass_dstected_pn = 0]

MARK_EV1_PRI

. e timer oo [[cass_4PID_mull_events_pid +
Eumfrgr"kr_-g' mr_pd_class_detecled DR | i nd dass detected_p = 4) * (dlass_num,_events_pr > 1))]°
start tme_timer_pri (rmr_pd_clags_detected_pd > 0}) .

trme _timer_piri_donie

| cLass Evz Prl |
In the following text of the exit from CLASS_EV1_LCE_PRI to MARK_EV1_PRI:

tlce_timer_pri_done * [[class_4PID_mult_events_pri +((mr_pd_class_detected_pri = 4) * (class_num_events_pri > 1)) |
*(mr_pd_class_detected_pri>0)]

The conditions are true if:

a) tlce timer pri_done * class 4PID_mult_events_pri *(mr_pd_class_detected_pri > 0) which means tlce timer is done and
PSE uses 3 class event for 4PID and it has to be true when the first class signature>0 since it is dual-signature PD that
starts with class signature 1 to 5.

b) tlce_timer pri_done *((mr_pd class_detected pri =4) * (class_num_events pri > 1)) *(mr_pd class_detected pri > 0)

There are 2 issues:
1. Redundant round parenthesis in the part: +((mr_pd_class_detected_pri = 4) * (class_num_events_pri > 1))
2. Why in part (b) we need (mr_pd_class_detected_pri > 0) if we have (mr_pd_class_detected_pri = 4).

Suggested Remedy:

Change from:

tlce_timer_pri_done * [[class_4PID_mult_events_pri +((mr_pd_class_detected pri=4) *
(class_num_events_pri > 1))] *(mr_pd_class_detected_pri>0)]

To:

tlce _timer pri_done * class 4PID mult events pri *(mr_pd_class_detected_pri > 0)+
tlce timer pri_done *(mr pd class detected pri=4) * (class num_events pri> 1) =

= tlce_timer pri_done*

[class 4PID mult events pri *(mr_pd_class_detected_pri > 0) +(mr_pd class detected pri =
4)*(class_num_events_pri > 1)]

PSE and PD state machine comments and baseline. Rev 001 Page 7 of 8

Comment (clause 33.2.5.12, page 88 line 25, Figure 33-23)
[Comment #229]

See darshan_08_0316.pdf for new Figure 33-23.

Figure 33—23—Type 3 and Type 4 inrush monitor state diagram does not reflect the case where POWER_UP for ALT A and ALT
B may be done in different time and not simultaneously.

Suggested Remedy:

Replace Figure 33-23 as proposed in darshan_08_0316.pdf for new Figure 33-23.

lalt_pri_pwrd lalt_sec_pwrd
IDLE_INRUSH_PRIl |#— IDLE_INRUSH_SEC |a——
stop tinrush_pri_timer stop tinrush_sec_timer
alt_pri_pwrd alt_sec_pwrd
MONITOR_INRUSH_PRI MONITOR_INRUSH_SEC
start_tinrush_pri_timer start_tinrush_sec_timer
pwr_app_pri pwWr_app_sec

PSE and PD state machine comments and baseline. Rev 001 Page 8 of 8

