
IF (mr_pse_alternative = both) THEN

ELSE

pri_init
IF pingpong_en THEN

IF (alt_pri = a) THEN alt_pri <= b
ELSE THEN alt_pri <= a

]

(mr_pse_alternative = both) *

(mr_pse_alternative = both) * [

(sig_pri = valid)

st detection prior to CC to next detection after CC.
pri to detect sec, after CC was completed.
e detection cycle alternates between pri and sec. It will move on to CC once

IF (sig_type = single) THEN

* (sig_type = single)

* (mr_pse_alternative = both)

pairset and the other one is done on page 1, in the IDLE block. This is done by
and b from one cycle to next one. This means that prior to connection check,
s, we go back to IDLE block and reinitialize det_temp to 0.
st detection that succeeds also has det_temp = 1. We want to measure

Tdet2det is measured if det_temp = 1, simply because it means the detection on 2nd alt has not occurred
yet.

We check if Sig_typ = single because that confirms
that CC has been done and we’re no longer in the

ping-pong phase

(mr_pse_alternative = both) * [

+ (CC_DET_SEQ = 1)) *

] +

(mr_pse_alternative = both) *
(sig_type = open_circ) *

If det_temp = 0, it is implicit that the CC has been done and the current detection
cycle is AFTER CC. This means to start TPON.

Also if det_temp = 1, it means it is time to do CC next (B path).

(mr_pse_alternative = both) *
((det_temp = 1)*(sig_pri ≠ valid) + (det_temp = 0)*(sig_sec ≠ valid) +
((CC_DET_SEQ = 0)+(CC_DET_SEQ = 3)*(det_temp = 1)*tdet2det_timer_done))
+ (mr_pse_alternative ≠ both)*(sig_pri ≠ valid)

) + ((pd_req_pwr > 4) * (pse_avail_pwr > 4)))(() (

SEMI_PWRON_SEC

alt_pri_pwrd <= FALSE

SEMI_PWRON_PRI

alt_sec_pwrd <= FALSE

(short_det_sec +
ovld_det_sec +

option_vport_lim_sec)
* semi_pwr_en

(short_det_pri +
ovld_det_pri +

option_vport_lim_pri) *
semi_pwr_en

dll_4PID)+ ((pd_req_pwr > 4) * (pse_avail_pwr > 4)) +

SET_PARAMETERS_PRI

set_parameter_type

(pd_dll_power_type ≠ parameter_type)

(tmpdo_timer_done * !short_det_pri *
!ovld_det_pri * !option_vport_lim_pri)

+ power_not_available

short_det_pri +
ovld_det_pri +

option_vport_lim_pri
L

L

L

short_det_sec +
ovld_det_sec +

option_vport_lim_sec

SET_PARAMETERS_PRI

set_parameter_type

(pd_dll_power_type ≠ parameter_type)

(tmpdo_timer_done * !short_det_sec *
!ovld_det_sec * !option_vport_lim_sec)

+ power_not_available

!semi_pwr_en * (short_det_pri
+ short_det_sec +
ovld_det_pri + ovld_det_sec +
option_vport_lim_pri +
option_vport_lim_sec)

tmpdo_timer_done * !short_det_pri *
!ovld_det_pri * !option_vport_lim_pri *

!short_det_sec * !ovld_det_sec *
!option_vport_lim_sec *

!power_not_available

_pri

* !option_vport_lim_sec

!pwr_app_sec *

A2

WHAT IF SEC TURNS OFF DUE TO DC
DISCONNECT BUT PRI IS STILL POWERED ?

HOW DO WE DETERMINE 4PID IF SEC IS THEN
DETECTED WHILE PRI IS ALREADY POWERED ?

If PRI is valid prior to CC, redo PRI again right after
that. If SEC fails after, we don’t care, we can still power

PRI at least.

!alt_sec_pwrd is enough to go to
WAIT_PRI, !pwr_app_sec is not
required since it is implied that

alt_sec_pwrd being 0 means that the
SEC is unpowered

pd_cls_4PID_pri ← FALSE

IF (CC_DET_SEQ ≠ 2) THEN sig_pri ← invalid

PD_4pair_cand <= TRUE

If Class_4PID_mult_events_pri THEN

C2

If pwr_app_sec THEN
PD_4pair_cand <= TRUE

* !()

In Cisco SD, the path to POWER_UP_PRI if !PD_4pair_cand, was b
on not being in the process of turning ON alt sec (which could rev
later that it is not 4P capable), or having alt sec already powered
(detect worked indicating it can take 4P power). It was based on t
that the PD_4pair_cand variable would not be set if one 2P is pow
and the other 2P showed valid detection.

One problem with the original approach is that the path from
CLASS_EVAL_PRI to Power Denied block is based on alt_sec_pwrd
(with!PD_4pair_cand); the problem is that alt_sec_pwrd is mainta
set after the port has been powered and if detect worked while s
already powered, that should mean that it is 4P capable. To make
work, !pwr_app_sec should have been included.

This applies if PRI turns off due to DC disconnect and
SEC is still powered.

Since it comes from C2, we already
know that sig_pri = valid

If (!Class_4PID_mult_events_pri * pwr_app_sec) THEN
If (sig_pri = valid) THEN

PD_4pair_cand <= TRUE
ELSE

PD_4pair_cand <= FALSE

PD_4pair_cand_pri <= TRUE

PD_4pair_cand_pri <= FALSE

+ pwr_app_sec) THEN

!pwr_app_pri *

A3

((!Class_4PID_
+ Class_4PID_m

Here, the detecti
powered, only in t

((!Class_4PID_mult_events_sec * pwr_app_pri)
+ Class_4PID_mult_events_sec) *

We don’t want to go through IDLE block if staggered method is
selected.

Simply because the PRI may not have been powered yet (may still be
preparing to start detection), and it would then go to WAIT_SEC.

If ALT PRI has invalid detect, then SEC will not have a chance to be
detected and powered.

pd_cls_4PID_sec ← FALSE

IF (CC_DET_SEQ ≠ 2) THEN sig_sec ← invalid

C3

If Class_4PID_mult_events_sec THEN

If !Class_4PID_mult_events_sec THEN
If (sig_sec = valid) THEN

PD_4pair_cand <= TRUE
ELSE

PD_4pair_cand <= FALSE

alt_pri_pwrd)

If (!Class_4PID_mult_events_pri * pwr_app_pri) THEN
PD_4pair_cand <= TRUE

!alt_pri_pwrd

Since it comes from C3, we already
know that sig_sec = valid

If (!Class_4PID_mult_events_pri * pwr_app_pri) THEN
If (sig_sec = valid) THEN

PD_4pair_cand <= TRUE
ELSE

PD_4pair_cand <= FALSE

If pwr_app_pri THEN
PD_4pair_cand <= TRUE

We cannot simply use the statement (sig_sec = valid) * (sig_pri = valid) to state it is 4P
capable. Because if it is done in parallel, they may both show valid as long as the power

is NOT provided, but may not be 4P capable. Pd_cls_4PID_sec is used for that.

If the staggered approach is used, there is no way to set pd_cls_4PID_sec, so that
PD_4pair_can cannot be true.

This is why we need to check if PRI is powered and SEC has valid signature to determine
it is 4P capable.

+ pwr_app_pri) THEN
PD_4pair_cand_sec <= TRUE

PD_4pair_cand_sec <= FALSE

for SS PD

!mps_sum * (highest_2p = pri) * !mps_sum * (highest_2p = sec) *mps_sum * !pwr_app_pri * !pwr_app_sec

pwr_app_pri + pwr_app_sec

!mr_mps_valid_sum

mr_mps_valid_sum

M

highest_2p = sec

N

highest_2p = pri

MN

!pwr_app_pri

pwr_app_pri

!pwr_app_sec

pwr_app_sec

mps_sum * !alt_pri_pwrd * !alt_sec_pwrd

* highest_2p = sec* highest_2p = pri

mr_

K
K

mr_

mr_

tlce_timer_pri_done*
(class_4PID_mult_events_pri *(mr_pd_class_detected_pri > 0)
+ (mr_pd_class_detected_pri = 4)*(class_num_events_pri > 1))

tlce_timer_sec_done*
(class_4PID_mult_events_sec *(mr_pd_class_detected_sec > 0)
+ (mr_pd_class_detected_sec = 4)*(class_num_events_sec > 1))

	Page-1�
	Main State Diagram updates_rev4 PG2.pdf
	Page-2�

	Main State Diagram updates_rev4 PG3.pdf
	Page-3�

	Main State Diagram updates_rev4 PG4.pdf
	Page-4�

	Main State Diagram updates_rev4 PG5.pdf
	Page-5�

	Main State Diagram updates_rev4 PG6.pdf
	Page-6�

	Main State Diagram updates_rev4 PG7.pdf
	Page-7�

	Main State Diagram updates_MPS.pdf
	Page-10�

	Class State Diagram updates_DSPD.pdf
	Page-9�

	Class State Diagram updates_SSPD.pdf
	Page-12�

	Class State Diagram updates_DSPD.pdf
	Page-9�

	Class State Diagram updates_SSPD.pdf
	Page-12�

	Class State Diagram updates_DSPD.pdf
	Page-9�

	Class State Diagram updates_DSPD_1.pdf
	Page-11�

