Baseline for Autoclass fixes in D1.6 v111

33.2.5.11 Type 3 and Type 4 functions

Remove the pd_autoclass variable from 33.2.5.9.

Insert new function do_autoclassification in 33.2.5.11:

do_autoclassification

This functions returns the following variables:

pd_autoclass: This variable indicates whether the PD requests Autoclass during Physical Layer classification. pd_autoclass is set to True when a class signature if '0' is detected, otherwise it is set to False.

Values:

FALSE: The PD does not request Autoclass.

TRUE: The PD requests Autoclass.

 $mr_pd_autoclass_detected$: The PD classification signature seen during the T_{ACS} window of long first class event. Values:

- 0: class signature 0
- 1: class signature 1
- 2: class signature 2
- 3: class signature 3
- 4: class signature 4

33.2.5.12 Type 3 and Type 4 state diagrams

33.2.7.2 PSE Multiple-Event Physical Layer classification

A Type 1 or Type 2 PSE in the state CLASS_EV1 or a Type 3 or Type 4 PSE in the state CLASS_EV1_LCE shall provide to the PI V_{Class} as defined in Table 33–15. The timing specification for Type 1 and Type 2 PSEs shall be as defined by Table 33–15 value T_{CLET} -T_{pdc}, by T_{CLE1} for Type 2 PSEs, and by T_{LCE} for Type 3 or Type 4 PSEs. A Type 1 or Type 2 PSE shall measure I_{Class} and classify the PD based on the observed current according to Table 33–14. The A Type 3 or Type 4 PSE shall measure I_{Class} and classify the PD based on the observed current according to Table 33–14 within T_{pdc} - $T_{Class,LCE}$ as defined in Table 33–15. Type 3 and Type 4 PSEs may continue to monitor the current past T_{pdc} - $T_{Class,LCE}$. If the Type 3 or Type 4 PSE does not measure I_{Class} in the range of Class signature 0 before T_{ACS} min and the PSE measures I_{Class} in the range of Class 0 after T_{ACS} max this indicates the PD will perform Autoclass. (see 33.3.5.3).

Info (not part of baseline)

. . .

The below requirement doesn't work for the LCE class as it would require a measurement after 88ms. A new parameter T_{Class} is introduced. T_{Class} already exists in the PD section, but a comment will propose to rename that to T_{Class} . We use T_{Class} to indicate all class measurements are to be taken after 6ms.

All measurements of I_{Class} shall be taken after T_{Class} as defined in the minimum relevant class event timing of Table 33–15. This measurement is referenced from the application of V_{Class} min to ignore initial transients.

Insert two new items into Table 33–15 as follows:

Item	Parameter	Symbol	Unit	Min	Max	Single- or Multiple Event	Additional information
14	Class event I _{Class} mea- surement timing	T _{Class}	ms	6.00		Both	
15	LCE I _{Class} measurement timing	T _{Class_LCE}	ms	T _{Class}	75.0	Multiple	

33.3.3.4 Timers

Rename 'tacs_timer' to 'tacs_pd_timer' (1 occurrence).

33.3.3.6 State diagrams

Rename 'tacs_timer' to 'tacs_pd_timer' (2 occurrences).