

Extended Power

Heath Stewart

System Level Power Allocations

Single-signature PD Rules

 $P_{\text{Class}} = \left\{ V_{\text{PSE}} \times \left(\frac{V_{\text{PSE}} - \sqrt{V_{\text{PSE}}^2 - 4 \times R_{\text{Chan}} \times P_{\text{Class_PD}}}}{2 \times R_{\text{Chan}}} \right) \right\}_{\text{W}}$ (145–2)

PSE

Measured output power is P_{Con}

Guaranteed minimum output power is P_{Class}

where

 V_{PSE} is the voltage at the PSE PI as defined in 145.1.3.

R_{Chan} is the channel DC loop resistance

PClass_PD is the maximum power at the PD PI per the PDs assigned Class, as defined in

Table 145-24)

Cable IR Drop

Dual-signature PD Rules

The minimum output power a PSE supports on a pairset for PSEs connected to a dual-signature PD is defined by Equation (145–3). PSE implementations may use $V_{PSE} = V_{Port\ PSE-2P}$ min and $R_{Chan} = R_{Ch}$ to arrive at over-margined values as shown in Table 145–11. $P_{Class-2P}$ may subsequently be adjusted using Data Link Layer classification.

$$P_{\text{Class-2P}} = \left\{ V_{\text{pSE}} \times \left(\frac{V_{\text{pSE}} - \sqrt{V_{\text{pSE}}^2 - 4 \times R_{\text{Chan}} \times P_{\text{Class_PD-2P}}}}{2 \times R_{\text{Chan}}} \right) \right\}_{\text{W}}$$
(145–3)

where

 $V_{\rm PSE}$ is the voltage at the PSE PI as defined in 145.1.3.

R_{Chan} is the channel DC loop resistance

 $P_{\text{Class PD-2P}}$ is the maximum power at the PD PI for a pairset per the PDs assigned Class, as

defined in Table 145-25

PD
Maximum input power is
P_{Class_PD}

PD Extended Power

- PSE have always allowed to recover R_{Chan}
- Class 6 and Class 8 SS PDs are now allowed to recover R_{Chan}
- Class 5 DS PDs are now allowed to recover R_{Chan}

145.3.8.2.1 Input average power exceptions

For Class 6 and Class 8 single-signature PDs, when additional information is available to the PD regarding actual channel DC resistance between the PSE PI and the PD PI, the PD may consume greater than P_{Class_PD} but shall not consume greater than P_{Class} at the PSE PI and shall not draw a total 4-pair current in excess of $2 \times I_{Cable}$ as defined in Table 145–1.

For Class 5 dual-signature PDs, when additional information is available to the PD regarding actual channel DC resistance between the PSE PI and the PD PI, the PD may consume greater than P_{Class_PD-2P} but shall not consume greater than P_{Class_PD-2P} at the PSE PI and shall not draw current in excess of I_{Cable} as defined in Table 145–1.

PD P_{Class_PD}

- PD P_{Class PD} is assigned
 - Initially by MEPLC
 - Later can be modified by LLDP
- It is not calculated, it is a scalar

Table 145–24—Physical Layer Classifications and Multiple Event Responses for singlesignature PDs

PD Type	Requested Class	class_sig_A class signature	class_sig_B class signature	P _{Class_PD} (W)
3	1	1	1	3.84
	2	2	2	6.49
	3	3	3	13
	4	4	4	25.5
	5	4	0	40
	6	4	1	51
4	7	4	2	62
	8	4	3	71.3

NOTE-See Table 145-23 for definition of class signatures 0 to 4.

NOTE—PDs may be assigned to a lower Class than their requested Class, which results in a lower value of P_{Class} p_D.

Table 145–25—Physical Layer Classifications and Multiple Event Responses for dualsignature PDs

PD Type	Requested Class per pairset	class_sig_A class signature	class_sig_B class signature	P _{Class_PD-2P} (W)
3	1	1	0	3.84
	2	2	0	6.49
	3	3	0	13
	4	4	0	25.5
4	5	4	3	35.6

NOTE-See Table 145-23 for definition of class signatures 0 to 4.

NOTE—PDs may be assigned to a lower Class than their requested Class, which results in a lower value of $P_{Class\ PD}$.

PSE P_{Class}

- The table appears to assign PSE P_{Class}
- Note refers to correct equation as shown in first slide
- PSE P_{Class} is dictated by equation as a function of:
 - P_{Class_PD}
 - R_{Chan}
 - V_{PSE}

$$P_{\text{Class}} = \left\{ V_{\text{PSE}} \times \left(\frac{V_{\text{PSE}} - \sqrt{V_{\text{PSE}}^2 - 4 \times R_{\text{Chan}} \times P_{\text{Class_pD}}}}{2 \times R_{\text{Chan}}} \right) \right\}_{\text{W}}$$
(145-2)

where

 $V_{\rm PSE}$ is the voltage at the PSE PI as defined in 145.1.3.

R_{Chan} is the channel DC loop resistance

 $P_{\text{Class PD}}$ is the maximum power at the PD PI per the PDs assigned Class, as defined in

Table 145-24)

Table 145–11—Physical Layer power classifications

PD Requested Class	Number of PSE class events	Assigned Class	P _{Class}	P _{Class-2P}				
PSEs connected to a single-signature PD								
1	1	1	4 W	_				
2	1	2	7 W	_				
0, 3 to 8	1	3	15.4 W	_				
4 to 8	2 or 3	4	30 W	_				
5	4	5	45 W	_				
6 to 8	4	6	60 W	_				
7	5	7	75 W	_				
8	5	8	90 W	_				
	PSEs connected to a dual-signature PD (classification per pairset)							
1	1, 2, or 3	1	_	4 W				
2	1, 2, or 3	2	_	7 W				
3	1, 2, or 3	3	_	15.4 W				
4 or 5	1	3	_	15.4 W				
4 or 5	2 or 3	4	_	30 W				
5	4	5	_	45 W				

NOTE 1— P_{Class} is the minimum required power at the PSE PI calculated using minimum V_{Port} PSE-2P and maximum R_{Chan} . Use Equation (145-2) for other values of V_{Port} PSE-2P and R_{Chan} . For maximum power available to PDs, see Table 145-24.

NOTE 2— $P_{Class-2p}$ is the minimum required power for a pairset calculated using minimum $V_{port\ PSE-2p}$ and maximum $R_{Chan-2p}$. Use Equation (145-3) for other values of $V_{port\ PSE-2p}$ and $R_{Chan-2p}$. For maximum power available to PDs, see Table 145-25.

NOTE 3—The number of PSE class events refers to the number of class events since the most recent PD reset.

Change 1: Reinvoke P_{Con} **And Create P**_{Con-2P}

Table 33–17—PSE output PI electrical requirements for all PD Classes, unless otherwise specified (continued)

13	Continuous output power capability in	P _{Con}	W	P _{Class}	All	See 33.2.8.10, Table 33–12.
	POWER_ON state					

Table 33–17—PSE output PI electrical requirements for all PD Classes, unless otherwise specified (continued)

₽							
	13	Continuous output power capability in POWER_ON state per pairset	P _{Con-2P}	W	P _{Class-2P}	All	See 33.2.8.10, Table 33–12.

Change 1: Recreate Associated Text for P_{Con} and P_{Con-2P}

145.2.8.11 Continuous output power in POWER_ON state

P_{Class} is the class power defined in 145.2.7 and Equation (145–2), or PSE allocated power (as defined in 79.3.2.6) added to the channel power loss for both pairsets combined.

P_{Class-2P} is the class power defined in 145.2.7 and Equation (145–3), or PSE allocated power (as defined in 79.3.2.6) added to the channel power loss for a pairset. This parameter only applies to PSEs operating both pairsets and connected to a dual-signature PD that advertised a different class signature on each pairset.

 P_{Class} , $P_{Class-2P}$, P_{Con} and P_{Con-2P} are valid over the range of V_{Port_PSE-2P} defined in Table 145–16. Measurements should be averaged using any sliding window with a width of 1 s.

Change 2: Hook Extended Power to PCon

- P_{Class} <-> P_{Class PD} is a system-level contract and should be inviolate
- P_{Con} is the real-time output power of the PSE
- Additional power at the PSE output less the IR drop can be made available at the PD
- Mechanisms for communicating and negotiating are out-of-scope

145.3.8.2.1 Input average power exceptions

For Class 6 and Class 8 single-signature PDs, when additional information is available to the PD regarding actual channel DC resistance between the PSE PI and the PD PI, the PD may consume greater than P_{Class_PD} but shall not consume greater than P_{Class_PD} at the PSE PI and shall not draw a total 4-pair current in excess of $2 \times I_{Cable}$ as defined in Table 145–1.

For Class 5 dual-signature PDs, when additional information is available to the PD regarding actual channel DC resistance between the PSE PI and the PD PI, the PD may consume greater than P_{Class_PD-2P} but shall not consume greater than $P_{Class-2P}$ at the PSE PI and shall not draw current in excess of I_{Cable} as defined in Table 145–1.

PCOR-2P on the corresponding pairset

