Analysis of High Side Current Sensing Architecture with Single Power Channel

System Efficiency, Accuracy, Thermal and System Costs Considerations

Jean Picard

May 2014

Supporters

- Fred Schindler / SeenSimply
- Kousalya Balasubramanian / Cisco
- Yair Darshan / Microsemi
- Miklos Lukacs / SiLabs
- Sesha Panguluri / Broadcom
- Antonio Garza / Cisco
- Victor Renteria / Bel Stewart & TRP Connector

Goal of this Presentation

The motivation of this work is to clarify and correct statements in stewart_01_0514.pdf presentation. This is done by analyzing the new architecture ¹ which uses two high side current sensing elements and a single PSE power switch.

- Power Dissipation and Heat
- Current Measurement and FET Control Complexity
- System Cost

1 – See stewart, "4 Pair PoE Cost Comparison Redux"

Impact of DC Disconnect Accuracy on High Side Current Sensing and System Efficiency

- The new architecture ¹ uses one sense resistor per 2P, as shown below.
- As explained in previous presentation ², if "bt" PSE is connected to a <u>single</u> "at" PD interface, the DC disconnect threshold **CANNOT** change
 - \Rightarrow is same as defined in "at" spec: 5-10 mA
 - ⇒ this mandates a "global" (4P) sense resistor value of 0.255 Ohms³ while doing <u>DC disconnect</u> measurement otherwise the accuracy of the measurement goes down. ⇒In the present case, same current is split between 2 elements and there is <u>still only</u> <u>one</u> power switch, this mandates **0.51** Ω per resistor, to just <u>maintain same</u> accuracy.
- The system power loss in high power is <u>the same</u>, there is no improvement and it is still problematic.

2 - See Picard, "An Optimum Approach to Apply DC Disconnect"

3 - Lowest in industry sense resistor value used by PSE controllers working with external MOSFET is 0.255 Ohm.

Calculation Example

- PD with 51W input and 40m cable length (for more details see ²)
- As shown below, the system power loss in high power is <u>the same</u> as the old architecture, there is **no** improvement.
- As explained before ², the 4P efficiency savings are (still) lost by excess power dissipation on the sense resistor. The concept of 4P power savings is lost.
- Consequently, the following conclusions of document 1 are proven to be incorrect.
 - Slide 11 says "Heat argument eliminated by 2 sense architecture".
 - Slide 8 says "Rsense argument eliminated by 2 sense architecture

Why the 2 Switches Approach is More Efficient and Accurate at Same Time ?

• Methodology:

- Drive 4P if "bt" PD
- If "at" PD:
 - Drive 4P, then when DC disconnect is "suspected", do DC disconnect check with <u>1st switch only</u> for high accuracy.
- This explains why with 2 switches, each sensing resistor can be as low as 0.255 ohm (and not 0.51 ohm).
- This method combines <u>all the positive</u> system aspects

Additional Thermal Problems with High Side Current Sensing

- Dissipation is from 2 main elements, the FET and the resistor.
- The FET heat is usually transmitted to air through FET body and drain PCB trace/copper surface, which size is limited.
- The <u>Resistor</u> heat is usually directly transmitted to GND plane through electrical & thermal contact, which large copper surface helps to keep temperature low.
- But, with the high side sensing, the <u>resistors are on the drain of the FET</u>:
 - There is no longer any GND plane to which the resistor can transfer its heat.

– Where will the heat go?

- Even worse, both the resistors and FET transfer their heat to the <u>same drain</u> <u>trace</u>, which is limited in size.
- This can be the source of serious FET temperature problems and failures.

Other Considerations, Complexity & Costs

- Sensing voltage across a shunt with one side referenced to GND is easiest
- The architecture using two "floating" drain current sense resistors (<u>one for each</u> <u>pair</u>) introduces significant design complexity:
 - Requires means to shift that voltage down to digital domain voltage range.
 - Using a difference amplifier to measure a small voltage and ignore a large common mode voltage is challenging.
 - Even worse when the common mode is <u>"variable" (the drain is not a constant</u> voltage).
 - Requires accurate rail to rail, low offset/high speed, high CMRR current sense instrumentation amplifier for each of the current sense drain resistors
 - Needs additional circuit blocks for each sense resistor to manage high speed short circuit and closed loop ILimit control. Reaction to severe overload (ex: short circuit) must be fast, otherwise very high current may be reached which would be detrimental to the system.

Simple Ground referenced sense Architecture

New 2 high side sense Architecture⁸

High Side sensing: Complexity & Costs

- One approach would be to have floating circuitries "riding" on the DRAIN pin, adding a LOT of complexity.
 - Much larger size than a low side, high speed comparator with the direct feedback to the GATE amplifier.
- Another approach would be to fully isolate and float (for each channel) the A/D, llim and lsc blocks,..., which means fundamental changes.
- So, the savings with high side sensing would be minimal, if any.

Systems Costs and Complexity

- Below is a summary of overall cost per port.
- Note that document 1 says <u>"field data support 1.25x</u>" for the MOSFET is not clear. The 1.5x shown below is based on true high volume prices.
 - In fact, this factor could even be 2x, since the volume would be much lower for the bigger FET (most of "30W and lower" market would use a smaller FET).
- Also (not shown below), the 2-power channel architecture has indirect savings from being more efficient.

_		Dual Power Channel		Single Power Channel		→ high side
Component	Weighting	Increase	Effective	Increase	Effective	sensing
		over AT*	Contribution	over AT*	Contribution	
Magjack	61.0%	15.0%	9.15%	35.0%15%	21.35 ^{9.15%}	→ *
PCB	14.0%	0.0%	0.00%	20.9%35%	2.89%	
PoE Controller	14.0%	100.0%	14.00%	40.6%90%	5.69212.6%	
FET	8.0%	100.0%	8.00%	50.0%	4.00%	
Sense Resistor	1.5%	100.0%	1.50%	200.0%	3.00%	
TVS Diode	1.5%	100.0%	1.50%	0.0%100%	⁶ 0.09% ^{1.5%}	
Total Cost			34 15%		35.15%	
Increase			54.1570		50.75/0	
* Magjack savings applicable only if overload protection (ICUT) is a requirement per 2P to avoid damage to the data transformers						

🔱 Texas Instruments

Summary

In summary, the high side drain current sensing combines all the negative system aspects of complexity, thermal, efficiency with <u>no</u> cost benefit.

PD Configuration	Dual Power Channel	Single Power Channel with High Side Sensing	
"bt" PD Interface, High Power PDs	Simple thermal design	Thermal issues, highly problematic thermal design	
Single "at" PD Interface	High accuracy, Low complexity	Highest PSE dissipation & temperature, Highest system + PCB cost, Highest Complexity	
	Lowest PSE dissipation & temperature		
	Lowest system cost		
	Highest system efficiency	Medium-Low system efficiency	