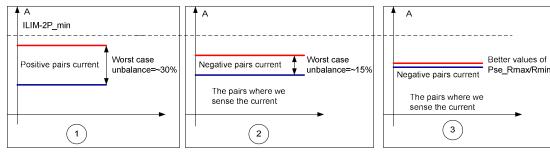
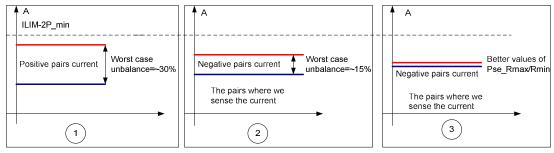
<u>Supporters:</u> Yseboodt Lennart / Philips. Wendt Matthias / Philips Shahar Feldman / MSCC

Comment: (Clause 33.2.8, Page 105 line 35, Editor Note #2)


Addressing Editor's Note #2. Its content from D1.7 is shown below. The text marked blue was modified to make the subject more clear.

2. E2EP2P\_lunb is the highest (~30%) on the pairs were we don't sense the current and lower on the pair we sense current (~15%). While specifying the PSE port current capacity per the highest P2P\_lunb is the correct approach (which we already did), it is worth to consider if ILIM and ICUT need to be calculated per the pairs with highest unbalance or per the pairs with lower unbalance. The reason for this question is: Icut and Ilim values are set to much higher values than the actual current measure due to much higher P2P\_UNB. As a result the actual Ilim protection will be activated ~11.1% above Type 4 maximum power. The solution is: Ipeak-2P\_unb and Ilim-2P\_unb will be allowed to be decreased if Rpse\_max and Rpse\_min will increase compare the values defined in equation 33-13 and will generate lower PSE PI pair to pair unbalance. This is actually what happened in the negative pairs.

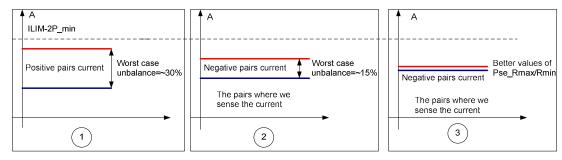
### The issue to be addressed


## Figure 1:

The positive pairs have the worst case unbalance. ILIM-2P\_min is located near the pair with the maximum current marked in RED.



## Figure 2:


The negative pairs have the lowest unbalance due to the fact that the sense resistors improve unbalance. ILIM-2P\_min is located at the same place in the current spec, pair with the maximum current marked in RED. The actual ILIM-2P\_min need to be lower than the one needed for the positive pairs in order to protect both the negative and positive pairs in efficient way because increase in the current at the positive pair due to a fault will be translated to lower increase in the negative pair so the actual protection will happen at ~11% above what we expecting.



# Figure 3:

The same case of Figure 2 but with better match of Rpse\_max/min that reduces unbalance. But here, now the ILIM-2P\_min is now further away from the actual current value of the pair with maximum current. This result with the need of big increase in the positive pair current to be sensed at the negative pairs where we do the sensing and control of the current.

The solution is to allow using lower ILIM-2P than specified in Table 33-17 for the pairs we sense the current if we use better values of Rpse\_min/max specified in equation 33-13 that actually reduces unbalance.



Addressing Editor Note #2 in D1.7 page 105 line 35. Rev 001. May 2016. Darshan Yair. Page 2 of 3

Proposed Remedy:

Add the following text in 33.2.8.7 on page 116 after line 23.

#### Proposed Remedy:

Type 3 and Type 4 PSEs that operate over 4-pairs and control the PSE PI pair to pair unbalance with higher values of Rpse\_max and Rpse\_min than those defined by equation 33-13 and have a lower resistance difference (Rpse\_max-Rpse\_min) may use lower values of ILIM-2P\_min and Ipeak-2P, as defined in TBD1 and TBD2.

| ILIM-2P_min_new= min{ ILIM-2P_min, ILIM-2P_min*f(Rpse_max, Rpse_min, alfa, beta)} | (TBD1) |
|-----------------------------------------------------------------------------------|--------|
|-----------------------------------------------------------------------------------|--------|

(TBD2)

Ipeak-2P\_unb\_new= ILIM-2P\_min\_new - 2mA

*Editor Note: The equation f(Rpse\_max, Rpse\_min, alfa, beta) and the values of alfa and beta will be determined in next meeting based on curve fit similar to the techniques used for equation 33-10.* 

Where:

ILIM-2P\_min\_new is the new minimum value of ILIM-2P\_min which is specified in table 33-17 when alfa>0 and beta>0 are used. ILIM-2P\_min is specified in Table 33-17 Rpse\_max is the value specified in Equation 33-13. Rpse\_min is the value specified in Equation 33-13. Alfa is the addition in the value of Rpse\_max. Beta is the addition in the value of Rpse\_min that maintain the following requirement: [(Rpse\_max+a)-(Rpse\_min+b)]/ (Rpse\_max+a+Rpse\_min+b)< (Rpse\_max -Rpse\_min)/ (Rpse\_max+Rpse\_min) Ipeak-2P\_unb\_new is the new minimum value of Ipeak-2P\_unb\_which is specified in equation 33-9.