

33.3.7.3 – PD Input Inrush Current

David Stover

Problem Statements

- PD inrush requirements section has become fragmented, creating conflicting requirements and unclear behaviors
 - Requirement conflict between
 - -PD Inrush Current (*I*_{Inrush-2P})
 - -PD Inrush Power ("shall consume a maximum of xyz power...")
 - Unclear behavior for PD-controlled inrush
 - $-C_{Port}$ "charged to 99%" vs PD-controlled inrush
 - Unclear behavior for PSE and PD-controlled inrush
 - $-I_{Con}$, I_{Con-2P} VS $I_{Inrush(_PD)}$, $I_{Inrush_(PD)-2P}$

Presentation Objectives

•Create an implementable set of rules

•Clean up inconsistencies

•Improve clarity

Clearly sort requirements into

Definitions

–T_{Inrush-2P} –T_{delay-2P} –C_{Port}, C_{Port-2P}

•PD requirements for...

-PSE-controlled Inrush

-PD-controlled Inrush

Original 802.3at PD Inrush Text

Inrush current is drawn during the startup period beginning with the application of input voltage at the PI compliant with $V_{Port_{PD}}$ requirements as defined in Table 33–18, and ending when C_{Port} is charged to 99 % of its final value. This period should be less than T_{Inrush} min per Table 33–11.

Type 2 PDs with pse_power_type state variable set to 2 prior to power-on shall behave like a Type 1 PD for at least T_{delay} min. T_{delay} starts when V_{PD} crosses the PD power supply turn on voltage, V_{On} . This delay is required so that the Type 2 PD does not enter a high power state before the PSE has had time to switch current limits from I_{Inrush} to I_{LIM} .

Input inrush current at startup is limited by the PSE if C_{Port} < 180 µF, as specified in Table 33–11.

If $C_{Port} \ge 180 \ \mu F$, input inrush current shall be limited by the PD so that $I_{Inrush PD}$ max is satisfied.

Definition of T_{Inrush}

Definition of T_{delay}

PSE-controlled Inrush

PD-controlled Inrush

Proposed Solution

- •Reinstate 33.3.7.3 template per 802.3-2012
 - •Definition and explanation of $T_{Inrush-2P}$
 - •Definition and explanation of $T_{delay-2P}$
 - •New to bt: Definitions of C_{Port}, C_{Port-2P}
 - Conditions for PSE-controlled inrush
 - –New to bt: Note regarding PSE transition from POWER_UP into POWER_ON state
 - Conditions for PD-controlled inrush

Proposed Solution: Paragraph #1, TInrush-2P

- •Definition and explanation of T_{Inrush-2P}
 - •Decouple $T_{Inrush-2P}$ from "C_{Port} charged to 99%"

–Allow PD-controlled inrush to extend beyond T_{Inrush-2P}, T_{delay-2P}

- •Move T_{delay-2P} requirements into PSE- and PD-controlled inrush requirements
 - -T_{delay-2P} requirements differ, depending on who controls inrush

Proposed Solution: Paragraph #1, TInrush-2P

Inrush current is drawn during the startup period beginning with the application of input voltage at the PI compliant with $V_{port PD-2P}$ requirements as defined in Table 33–28, and ending when Cport-the PD input voltage has reached a 99% of steady state and is charged to 99% of its final value. This period shall be less than T_{Inrush-2P} min per Table 33–17, with the PSE minimum inrush behavior defined in 33.2.8.5. Type 1, Type 2, and Type 3 PDs shall consume a maximum of Type 1 power for at least T_{delav-2P} min, Type 4 PDs shall consume a maximum of Class 2 power for at least T_{delav-2P} min. This allows the PSE to properly complete inrush.

Decouple T_{Inrush} from requirement that C_{Port} shall be charged.

Note 1: For PSE-controlled inrush, this requirement is <u>preserved</u> in the PSE-controlled inrush paragraph.

Note 2: This is <u>identical</u> text to existing note in 33.3.7.3, regarding PSE transition from POWER_UP to POWER_ON.

T_{delay-2P} requirements are moved to PSE- and PD-controlled inrush.

Statement about PSE properly completing inrush is removed; "PD input voltage to 99% within $T_{Inrush-2P}$ " is not the only requirement for PSE to properly complete inrush.

Proposed Solution: Paragraph #2, T_{delay-2P}

•Definition and explanation of $T_{delay-2P}$

•Fix typographical error

Proposed Solution: Paragraph #2, T_{delay-2P}

 $T_{delay-2P}$ for each pairset starts when V_{PD} crosses the PD power supply turn on voltage, V_{On_PD} . This delay is required so that the Type 2, Type 3 and Type 4 PD does not enter a high power state before the PSE has had time to change the available current on each pairset from $I_{Inrush-2P}$ to I_{Con-2P} .

Proposed Solution: Paragraph #3, C_{Port} and C_{Port-2P}

- Move definitions of C_{Port}, C_{Port-2P}
 - –Definitions of C_{Port} and $C_{Port-2P}$ should precede usage (PSE- and PD-controlled inrush paragraphs)

Proposed Solution: Paragraph #3, C_{Port}

 C_{Port} in Table 33–28 is the total PD input capacitance during the POWER UP and POWER ON states that a PSE sees as load when operating one or both pairsets, when connected to a single-signature PD. $C_{Port-2P}$ in Table 33–28 is the PD input capacitance during the POWER_UP and POWER ON states that a PSE sees as load on each pairset independently, when connected to a dual-signature PD. See Figure 33–37 for a simplified PSE-PD C_{Port} and C_{Port-2P} interpretation model.

No text is changed within C_{Port} paragraph.

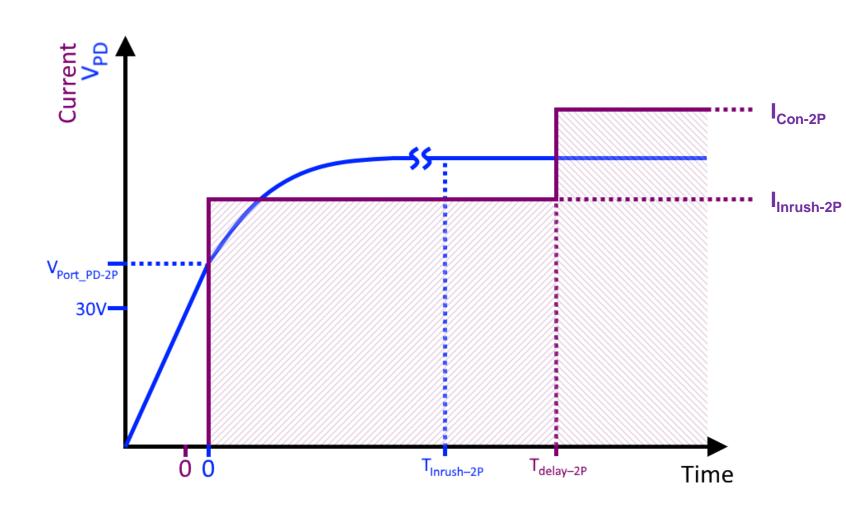
Proposed Solution: Paragraph #4, PSE-controlled Inrush

- Conditions for PSE-controlled inrush
 - Maintain "C_{Port} charged to 99%" requirement for PSE-controlled inrush
 - •Define PD T_{delay-2P} requirement
 - -For PSE-controlled inrush, this is the time period between...
 - The minimum time at which the PSE may inspect "power_applied" (TInrush-2P_min), and,
 - The minimum time at which the PD may transition to MDI_POWER2 (<u>T_{delay-2P} min</u>)

Proposed Solution: Paragraph #4, PSE-controlled Inrush

Input inrush currents at startup, $I_{Inrush PD}$ and I_{Inrush PD-2P}, as defined in Table 33–17, are limited by the PSE if $C_{Port} < 180 \ \mu F$ for single-signature PDs assigned to Class 0 to 6, and if $C_{Port} < 360 \ \mu F$ for PDs assigned to Class 7 or 8. Input inrush current at startup, I_{Inrush PD-2P}, is limited by the PSE if $C_{Port-2P} < \frac{180}{110} \mu F$ for dual-signature <u>Type 3</u> PDs.<u>and if C_{Port-2P} < 180 µF for dual-signature</u> Type 4 PDs. If the PSE is limiting input inrush current, C_{Port} shall be charged to 99% of its final value within T_{Inrush-2P}. If the PSE is limiting input inrush current, PDs shall conform to either IInrush PD and I_{Inrush PD-2P}, or I_{Con} and I_{Con-2P}, whichever is lower, between T_{Inrush-2P} min and T_{delay-2P}.

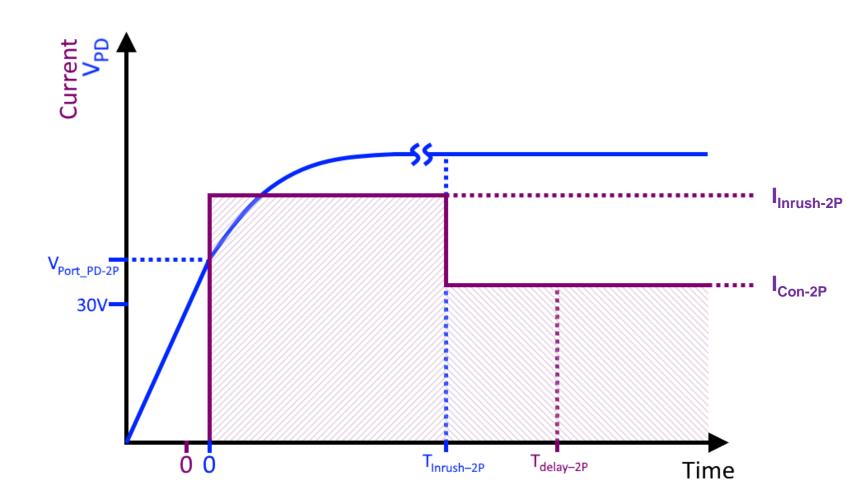
Update threshold for PSE-controlled inrush, to reflect changes in Tables 33–17 and 33–28 from D1.7.


Preserve legacy guarantee: For PSEcontrolled inrush, C_{Port} shall be charged to 99% of final value within $T_{Inrush-2P}$.

Enforce requirements:

- PD is not allowed to transition into a high-power state prior to T_{delay-2P}.
- PD is not allowed to draw more current than its continuous current allocation (see "pd_max_power" usage, 33.3.3.5)

PSE-controlled Inrush: "Whichever is lower"


Consider the example case of PSE-controlled inrush where I_{Con-2P} is greater than $I_{Inrush-2P}$, such as a Class 6 single-signature PD.

 PSE-controlled inrush means current at PD PI can reach I_{Inrush-2P} for T_{Inrush-2P}

 <u>PDs shall conform to</u> <u>I_{Inrush PD} and I_{Inrush PD-2P}, or</u> <u>I_{Con} and I_{Con-2P}, whichever is</u> <u>Iower, between T_{Inrush-2P}</u> <u>min and T_{delay-2P}.</u>

PSE-controlled Inrush: "Whichever is lower"

Consider the example case of PSE-controlled inrush where I_{Con-2P} is **less than** $I_{Inrush-2P}$, such as a Class 1 single-signature PD.

 PSE-controlled inrush means current at PD PI can reach I_{Inrush-2P} for T_{Inrush-2P}

```
    <u>PDs shall conform to</u>

        <u>I<sub>Inrush PD</sub> and I<sub>Inrush PD-2P</sub>, or</u>

        <u>I<sub>Con</sub> and I<sub>Con-2P</sub>, whichever is</u>

        <u>lower, between T<sub>Inrush-2P</sub></u>

        <u>min and T<sub>delay-2P</sub>.</u>
```


Proposed Solution: Paragraph #5, NOTE

•NOTE regarding PSE transition from POWER_UP into POWER_ON state

Proposed Solution: Paragraph #5, NOTE

NOTE— PDs may be subjected to PSE POWER_ON current limits during inrush when the PD input voltages reaches 99% of steady state or after $T_{inrush-2P}$ min. See 33.2.8.4 for details.

No text is changed within NOTE paragraph.

Proposed Solution: Paragraph #6, PD-controlled Inrush

Conditions for PD-controlled inrush

•Allow PD-controlled inrush period to extend beyond T_{Inrush-2P},

T_{delay-2P}

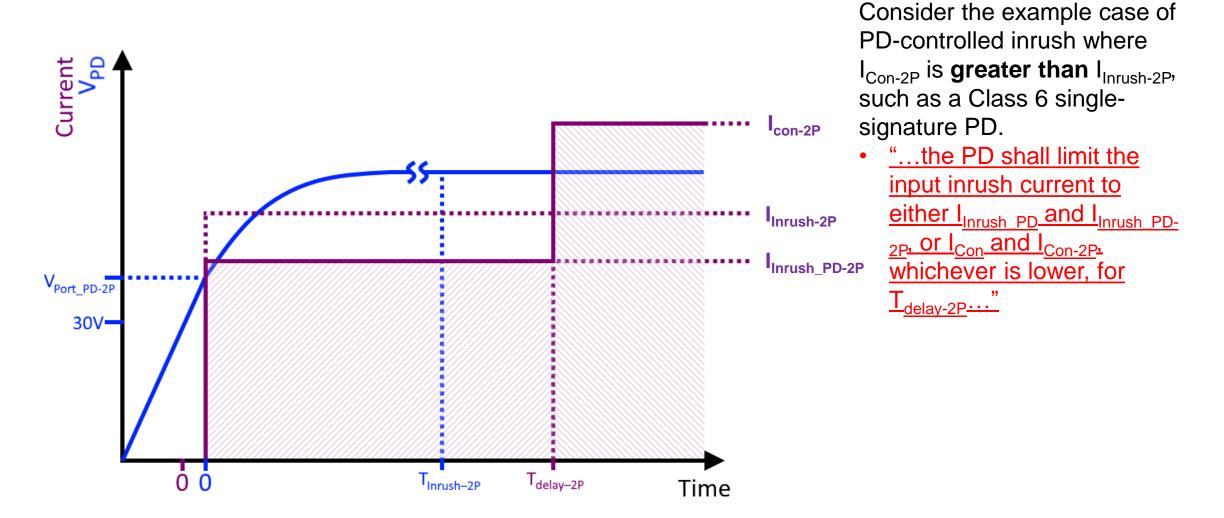
- -Requirements in Table 33-28, 33.2.8.5 maintained
- •Maintain PD-controlled inrush requirement that PD shall limit to I_{Inrush_PD-2P} or I_{Con-2P} , whichever is lower
- •Add note to alert PD designer that C_{Port} should have positive charging current

Proposed Solution: Paragraph #6, PD-controlled Inrush

If a PD has a larger C_{Port} or $C_{Port-2P}$ value, then the PD shall limit the input inrush current to either $I_{Inrush PD}$ and $I_{Inrush PD-2P}$, or I_{Con} and I_{Con-2P} , whichever is lower, for at least $T_{delay-2P}$ per Table 33–28, with the PSE minimum inrush behavior defined in 33.2.8.5. PDs limiting input inrush current may extend inrush beyond $T_{delay-2P}$. PDs limiting input inrush current should consume a lower DC load current value to guarantee positive charging current into C_{Port^2} .

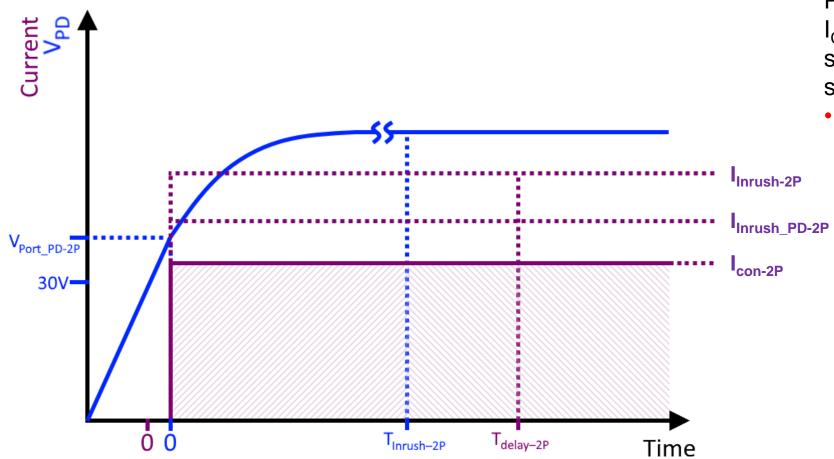
Enforce requirements:

- PD is not allowed to transition into a high-power state prior to T_{delay-2P}.
- PD is not allowed to draw more current than its continuous current allocation (see "pd_max_power" usage, 33.3.3.5)


Reference from Table 33–17 is updated to Table 33–28, where PDcontrolled inrush requirements live.

Explicitly state that PD-controlled inrush beyond $T_{delay-2P}$ is allowed.

Alert the PD designer that, in the case of PD-controlled inrush, headroom above DC load current is required to allow positive charging current into C_{Port} .



PD-controlled Inrush: "Whichever is lower"

PD-controlled Inrush: "Whichever is lower"

Consider the example case of PD-controlled inrush where I_{Con-2P} is **less than** $I_{Inrush-2P}$, such as a Class 1 single-signature PD.

 <u>"...the PD shall limit the</u> input inrush current to either I_{Inrush PD} and I_{Inrush PD}.
 <u>2P</u>, or I_{Con} and I_{Con-2P}, whichever is lower, for <u>T_{delay-2P}..."</u>

Questions?

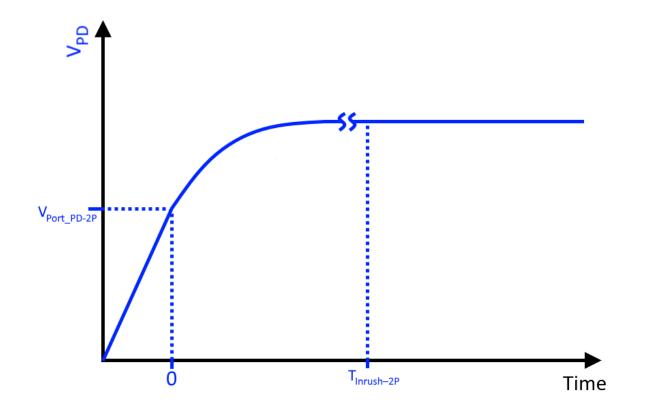
Annex: Conflicting Power Requirements

Annex: Conflicting Power Requirements

- •Upon review of the requirements outlined in Paragraph #1, we see
 - •Explicit requirement on the PD and PSE to limit based on a constant current requirement, I_{Inrush_PD-2P}
 - -These explicit requirements imply a symmetric power limit on the PSE and PD
 - •Explicit constant power requirement on the PD ("Shall consume a maximum of xyz power")
 - This explicit requirement defines a unilateral maximum power threshold for the PD

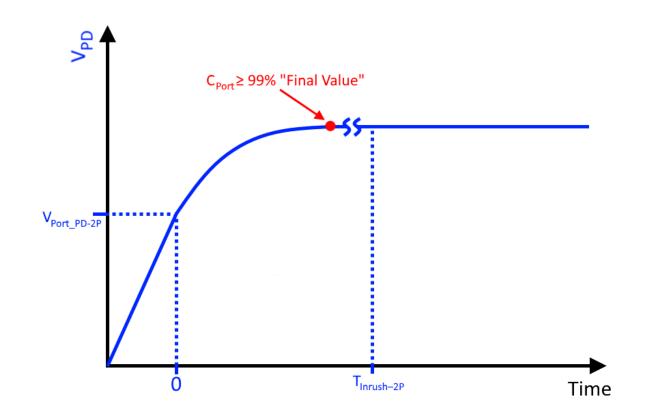
Annex: Conflicting Power Requirements

- Constant current and constant power requirements are in conflict
 - In some cases, the PD is allowed more power than the PSE is guaranteed to provide
 - In many cases, the PD is denied power that the PSE is required to provide

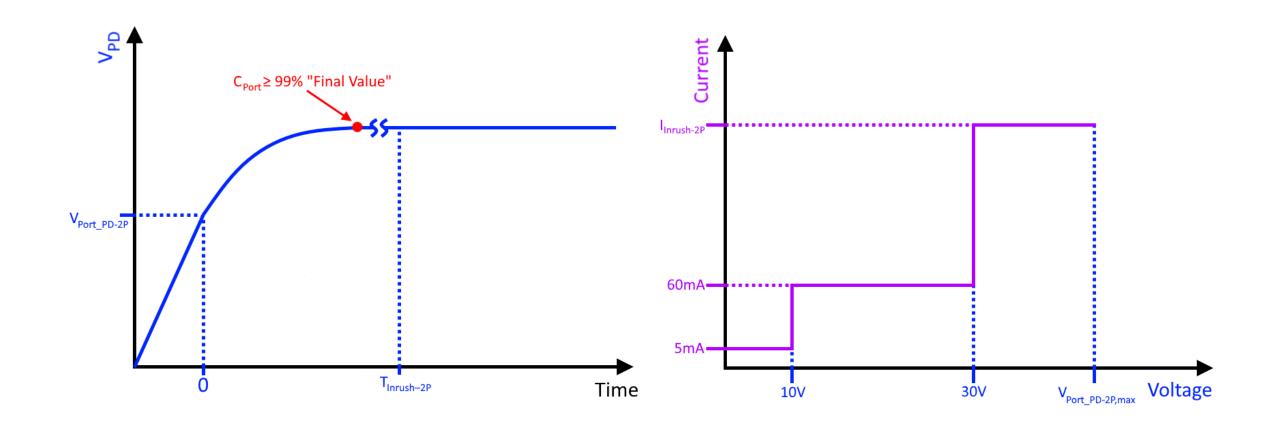

- Inrush current is drawn during the startup period beginning with the application of input voltage to the PI compliant with V_{port_PD-2P} requirements as defined in Table 33–28, and ending when C_{Port} has reached a steady state and is charged to 99% of its final value.
- This period shall be less than T_{Inrush-2P} min per Table 33–17, with the PSE minimum inrush behavior defined in 33.2.8.5.
- Type 1, Type 2, and Type 3 PDs shall consume a maximum of Type 1 power for at least $T_{delay-2P}$ min. Type 4 PDs shall consume a maximum of Class 2 power for at least $T_{delay-2P}$ min.
- This allows the PSE to properly complete inrush. New text in 802.3bt

Legacy Text

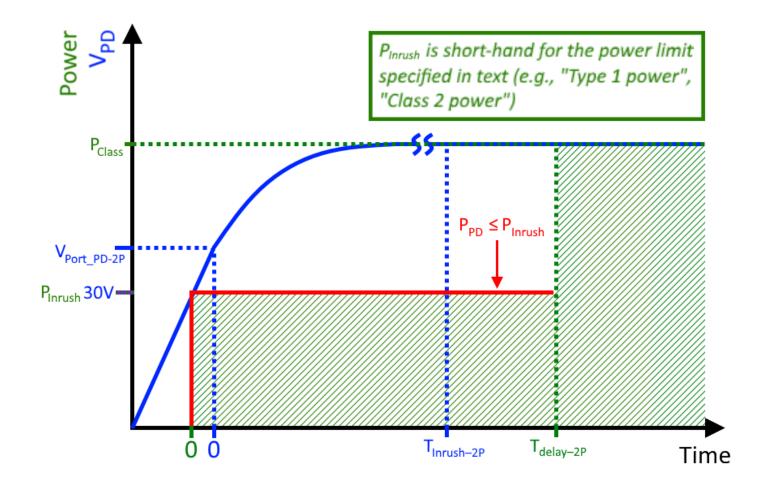
T_{delay-2P} (used before it is defined)



 Inrush current is drawn during the startup period beginning with the application of input voltage to the PI compliant with V_{port_PD-2P} requirements as defined in Table 33–28, and ending when C_{Port} has reached a steady state and is charged to 99% of its final value.

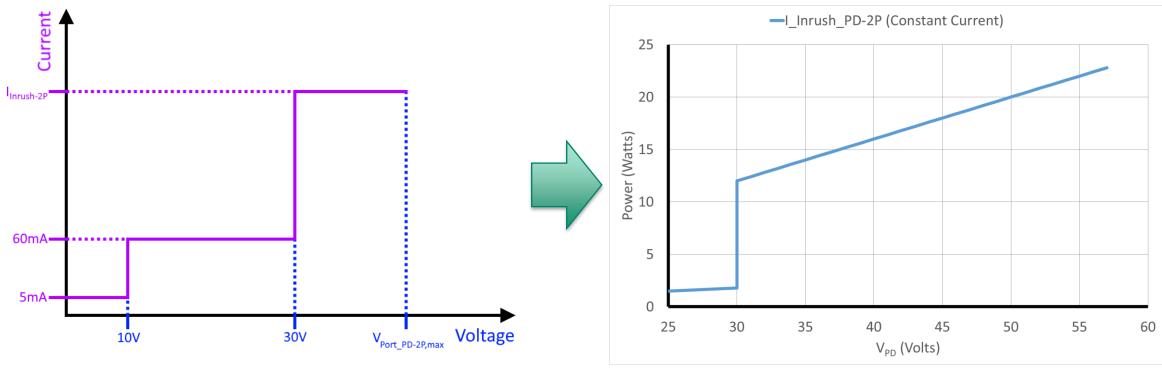


• This period shall be less than T_{Inrush-2P} min per Table 33–17...



 This period shall be less than T_{Inrush-2P} min per Table 33–17, with the PSE minimum inrush behavior defined in 33.2.8.5.

Type 1, Type 2, and Type 3 PDs shall consume a maximum of Type 1 power for at least T_{delay-2P} min. Type 4 PDs shall consume a maximum of Class 2 power for at least T_{delay-2P} min.



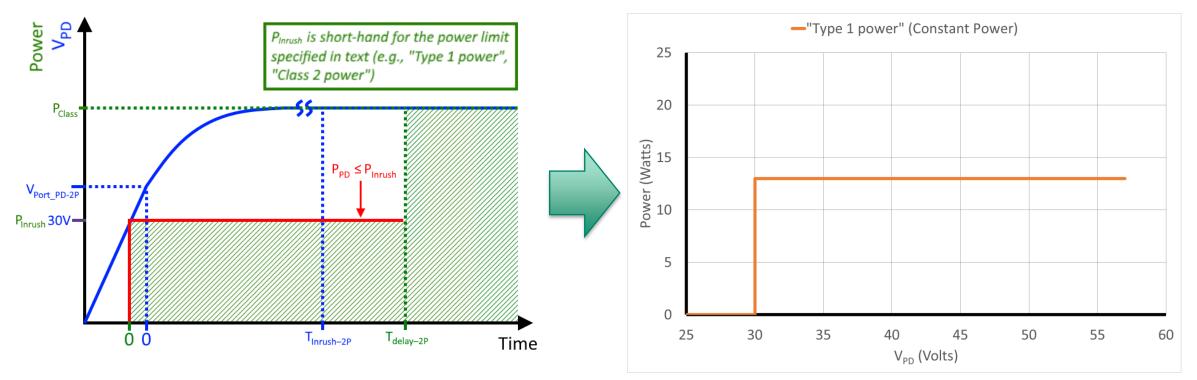
802.3bt – PD Inrush Requirements: Conflict

- This period shall be less than T_{Inrush-2P} min per Table 33–17, with the PSE minimum inrush behavior defined in 33.2.8.5.
- Example case:
 - Type 3 PD
 - PSE Requirement: IIInrush-2P min = 400mA

Explicit I/V Requirements

- PD Requirement (PD-controlled inrush): IIInrush_PD-2P max = 400mA

Implicit Power Requirements


802.3bt – PD Inrush Requirements: Conflict

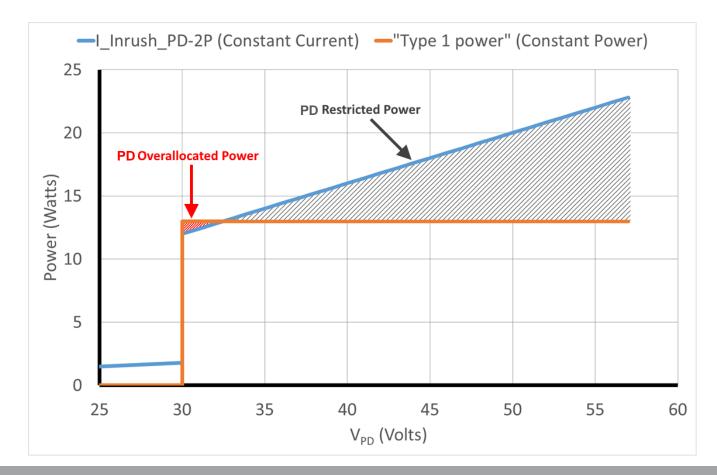
Type 1, Type 2, and Type 3 PDs shall consume a maximum of Type 1 power for at least T_{delay-2P} min. Type 4 PDs shall consume a maximum of Class 2 power for at least T_{delay-2P} min.

Same example case:

• Type 3 PD

– PD Requirement: "Type 1 power" max = 13W

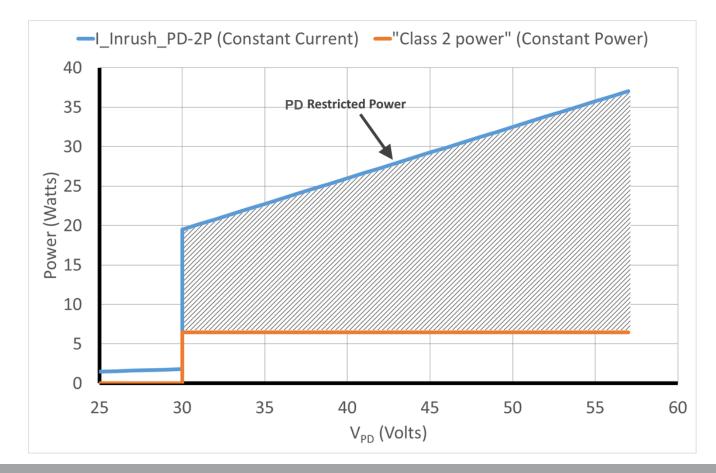
Explicit Power Requirements



802.3bt – PD Inrush Requirements: Combined

• "Type 1 power" requirement for our example case (Type 3 PD)

Allocates PD power budget higher than PSE minimum at low voltage


Restricts PD power budget beneath PSE guaranteed minimum and PD maximum (I_{Inrush-2P}, I_{Inrush_PD-2P}) at high voltage

802.3bt – PD Inrush Requirements: Combined

- "Class 2 power" requirement for another example case (Type 4 DS PD)
 - Restricts PD power budget <u>deeply</u> beneath $I_{Inrush-2P}$, I_{Inrush_PD-2P} at high voltage
 - Contrast with PSE requirement in 33.2.8.5.1 where Class 2 is power allocation to internal load component of PD
 - Here Class 2 power is specified for "total PD power consumption" i.e. at PD PI

