PSE & PD Power baseline v500

Info (not part of baseline)

This baseline addresses a number of issues identified in the PSE and PD power section (33.2.8.4 and friends).

33.2.5.4 Type 1 and Type 2 variables

Info (not part of baseline)

The legacy state diagram variables I_{Inrush} and I_{Port} have unfortunate names, seeming to imply they relate to 4-pair currents. By renaming them to $I_{Inrush-2P}$ and $I_{Port-2P}$ they better reflect what they are: pairset currents.

Rename I_{Inrush} to I_{Inrush-2P} for the legacy state diagram.

Rename I_{Port} to I_{Port-2P} for the legacy state diagram.

33.2.8 Power supply output

Info (not part of baseline)

 I_{Con} is defined in Table 33–17, but actually only applies to Type 1/2 and 4-pair single-signature. It would be more logical to have I_{Con} only pertain to 4-pair single-signature. Solution:

- Remove I_{Con} from Table 33–17
- Use I_{Con-2P} for Type 1 and Type 2 PSEs (similar to dual-signature PDs)

Remove item 5 (I_{Con}) from Table 33–17.

33.2.8.4 Continuous output current capability in the POWER_ON state

For Type 1 and Type 2 PSEs, $I_{Port-2P}$ is defined in 33.2.5.4. For Type 3 and Type 4 PSEs, $I_{Port-2P}$ and $I_{Port-2P-other}$ are the currents on the pairs with the same polarity of the two pairsets and are defined in Equation (33–5) and Equation (33–6).

Info (not part of baseline)

The D1.7 text says that PSEs need to be able to source I_{Con} , I_{Con-2P} and $I_{Con-2P-unb}$. This is not correct in all cases, for instance, PSEs connected to a dual-signature PD do not need to meet $I_{Con-2P-unb}$. The existing text is designed such that a all PSEs only need to meet I_{Con-2P} . The definition of I_{Con-2P} guarantees that meeting I_{Con-2P} automatically means meeting the other relevant parameters such as I_{Con} and $I_{Con-2P-unb}$ if they are applicable.

PSEs shall be able to source I_{Con}, I_{Con-2P} and I_{Con-2P-unb} as specified in Table 33–17 and Equation (33–7).

 I_{Con-2P} is the current the PSE supports on each powered pairset and is defined by Equation 33–7. A PSE is not required to support I_{Con-2P} values greater than $I_{Con-2P-unb}$. I_{Con} is the total current of both pairs with the same polarity that a Type 3 and Type 4 PSE supports, when powerering a single-signature PD in 4-pair mode. I_{Con} is defined in Equation 33–N1 $I_{Con-2P-unb}$ is the maximum currentbremovethe a Type 3 or Type 4 PSE supports over one of the pairs of the same polarity under maximum unbalance condition (see 33.2.8.4.1) in the POWER_ON state, when powering a single-signature PD in 4-pair mode.

Insert new Equation for I_{Con} after the above paragraph:

$$I_{Con} = \frac{P_{Class}}{V_{PSE}}$$

. . .

(33–N1)

Info (not part of baseline)

Now we use the same scheme for $P_{Peak-2P}$.

In addition to I_{Con-2P} , and $I_{Con-2P-unb}$ as specified in Table 33–17 and Equation 33–7, the PSE shall support the following AC current waveform parameters $I_{Peak-2P}$, while within the operating voltage range of V_{Port_PSE-2P} .

33.2.8.7 Output current — at short circuit condition

