
Simplified classification in the State Diagram v110

Info (not part of baseline)

This baseline is a replacement for the Type 3/4 PSE single-signature classification state diagram. A number of topics
are addressed:

1. The current D2.1 state diagram uses a complex combination of class num events and pse avail pwr to control
the classification flow. A further problem is that in the D2.1 text several permutations that should be possible
are not (eg. A Type 4 PSE can only have pse avail pwr = 7 or 8) This baseline simplifies this by removing
class num events and only work with pse avail pwr.

2. Two unrelated fixes that prevent the SD from working are fixed in the first subsection

3. The functionality of CLASS EVAL is to handle the special case that the PSE cannot power at all (pse avail pwr
< 3). This is merged into the mainline classification diagram.

4. The state POWER DENIED executes no statements, and has UCT as the exit condition. We can remove it,
without this having any affect on state diagram operation.

5. The variables pd req power and pd allocated power are currently returned by a function. The assignment of
those variables is however complex (due to power demotion) and should be done explicitly by the SD, rather
than ‘magically’ get filled out by a function. For this purpose the states CLASS EVAL A and CLASS EVAL B
are introduced.

6. An open ticket on the TDL is to implement improved discovery for the PD’s requested Class, even for PSEs
that have pse power available ≤ 3. Two separate changes are introduced:

– For PSEs with pse power available = 4, these will now always produce 3 class events, to discover the
requested Class

– PSEs with pse power available ≤ 3 make an initial 3 events, store the requested Class, reset the PD
classification, and proceed back to CLASS EV1 LCE. To enable this particular behavior, the variable
option classprobe must be set to TRUE prior to classification. The SD will reset this variable to FALSE
when it performs a class reset.

7. There are several ‘shalls’ in the Type 3/4 variable list. These are moved to the appropriate sections and struck
from the variable list.

Work items still open:

– PDs that request Class 0 have not been tested

– Harmonize dual-signature with single-signature

– Invalid PD classification currents are not tested

Fixes to the Type 3/4 PSE state diagram

Make changes as follows in Figure 33–15 through 33–22:

FROM state TO state Change

DETECT EVAL IDLE (pse alternative = both) * ((det temp = only one) * (sig pri 6= valid) +
(det temp = both neither) * (sig sec 6= valid) + (((CC DET SEQ = 0) +
(CC DET SEQ = 3)) * (det temp = only one) * tdet2det timer done)) +
(pse alternative 6= both) * (sig pri 6= valid)

IDLE INRUSH PRI MONITOR INRUSH PRI alt pwrd pri * !pwr app pri

IDLE INRUSH SEC MONITOR INRUSH SEC alt pwrd sec * !pwr app sec

1

Simplified classification

33.2.5.9 Type 3 and Type 4 variables

Add the following variables:
option classprobe

This variable indicates if the PSE should determine the requested Class of the PD when pse avail pwr is less than 3.
When set to TRUE, the PSE will issue 3 class events to determine the requested Class, perform a classification reset
by applying VReset for at least TReset to the PI (see Table 33–17), followed by a normal classification procedure.
Values:

FALSE: The PSE will not probe for the PD requested Class
TRUE: The PSE probes for the PD requested Class

pd allocated pwr

A variable that indicates the Class that has been assigned to the PD.
Values:

1: Class 1
2: Class 2
3: Class 3
4: Class 4
5: Class 5
6: Class 6
7: Class 7
8: Class 8

Info (not part of baseline)

The pd req pwr variable (returned by do classification) had a shall in it and a may. Both of these have been moved
to the classification section. The original text was:
pd req pwr: This variable indicates the power class requested by the PD. When a PD requests a higher class than a
PSE can support, the PSE shall assign the PD Class 3, 4, or 6, whichever is the highest that it can support. For Type 3
and Type 4 PSEs, when connected to a single-signature PD, operating over 4-pairs, classification events may appear
on one or both pairsets. See 33.2.7.

pd req pwr

The variable indicates the power class requested by the PD. When a PD requests a higher Class than a PSE can
support, the PSE assigns the PD to Class 3, Class 4, or Class 6, whichever is the highest Class it can support. If
pse avail pwr is less than 4, this variable does not contain the requested Class by the PSE; see pd req pwr probe.
Values:

1: Class 1
2: Class 2
3: Class 3
4: Class 4
5: Class 5
6: Class 6
7: Class 7
8: Class 8

pd req pwr probe

The variable indicates the power class requested by the PD when option classprobe is TRUE and pse avail pwr is
less than 4.
Values:

1: Class 1
2: Class 2
3: Class 3
4: Class 4
5: Class 5
6: Class 6
7: Class 7

2

8: Class 8

Info (not part of baseline)

We can now remove Table 33–7 (which ties PSE Type to class num events) and Table 33–8 (which ties
class num events to pse avail power). This is then replaced by a Table that links PSE Type to the allowed values
of pse avail power.

Change text on page 82 as follows:

Type 3 and Type 4 PSEs shall meet at least one of the allowable variable definition permutations described in Table 33–7 and
Table 33–8.
Type 3 and Type 4 PSEs shall set pse avail pwr, pse avail pwr pri, and pse avail pwr sec from the range in Table 33–7.

Remove Table 33–7 and 33–8.

Insert a new Table as follows:

Table 33–7 — Allowed Type 3 and Type 4 permutations for pse avail pwr

PSE Type pse avail pwr pse avail pwr pri,
pse avail pwr sec

Type 3 1 to 6 1 to 4
Type 4 1 to 8 1 to 5

33.2.5.11 Type 3 and Type 4 functions

Remove variables pd req pwr and pd allocated pwr from the do classification function.

Rename variables as follows:

Old name New name

pd class detected pd class sig
pd class detected pri pd class sig pri
pd class detected sec pd class sig sec

33.2.5.12 Type 3 and Type 4 state diagrams

Remove the states CLASS EVAL and POWER DENIED (including in and outgoing arcs) from Figure 33–15.

Change Figure 33–15 as follows:

FROM state TO state Change

POWER ON IDLE (tmpdo timer done + !power available) * !short det pri *
!ovld det pri * !option vport lim pri *
!short det sec * !ovld det sec *
!option vport lim sec * power available

Info (not part of baseline)

Note that the figure wich replaces Fig 33–18 was automatically generated from the state diagram simulator. The
layout isn’t always optimal, and small changes to the text sometimes cause a complete re-arrangement. When drawn
in Frame, a manual, sensible layout will be crafted. Statements are generally to the RIGHT of the arc they belong to.

3

Replace Figure 33–18 as follows (redraw it in Frame):

CLASS_EVAL_B

if pd_class_sig = 4:
 pd_req_pwr = 4
 pd_allocated_pwr = 4
else:
 pd_req_pwr = pd_class_sig + 5

CLASS_RESET

pd_req_pwr_probe = pd_req_pwr
do_class_reset()
tclass_reset_timer.start()
option_classprobe = False

 option_classprobe

MARK_EV_LAST

do_mark()
tme2_timer.start()

 !option_classprobe

IDLE

alt_pwrd_pri = False
alt_pwrd_sec = False
valid_sig_pri = False
valid_sig_sec = False
sig_type = 'open_circ'
det_temp = 'both_neither'
pse_dll_enabled = False
sism = False
iclass_lim_det = False
if (pse_alternative != 'both'):
 alt_pri = pse_alternative
else:
 if pingpong_en:
 if (alt_pri = 'a'):
 alt_pri = 'b'
 else:
 alt_pri = 'a'

MARK_EV2

do_mark()
tme1_timer.start()

CLASS_EV3

do_classification()
tcle3_timer.start()
pd_allocated_pwr = 4

 tme1_timer_done

 tcle3_timer_done *
(((pd_class_sig=4) + (pse_avail_pwr=4) + (pd_class_sig>0 *

pse_avail_pwr=5)) + option_classprobe)

MARK_EV3

temp_var = pd_class_sig
do_mark()
tme1_timer.start()

 tcle3_timer_done *
pd_class_sig ≠ 4 *

pse_avail_pwr > 4 *
(pd_class_sig=0 + pse_avail_pwr>5) *

!option_classprobe

CLASS_EV1_LCE

do_classification()
tlce_timer.start()
tclassacs_timer.start()
pd_autoclass = False
pd_allocated_pwr = 0
pd_req_pwr = 0
if pse_avail_pwr > 3:
 option_classprobe = False

 tlce_timer_done *
pse_avail_pwr < 3 *

pd_class_sig > pse_avail_pwr *
!option_classprobe

MARK_EV1

do_mark()
tme1_timer.start()
pd_req_pwr = pd_class_sig

 tlce_timer_done *
(((pd_class_sig=4) *

(pse_avail_pwr >= 4)) + (option_classprobe *
pd_class_sig=4))

CLASS_EVAL_A

pd_req_pwr = pd_class_sig
if pd_class_sig > pse_avail_pwr:
 pd_allocated_pwr = 3
else:
 pd_allocated_pwr = min(4, pd_class_sig)

 tlce_timer_done *
((pd_class_sig <= pse_avail_pwr *

pd_class_sig ≠ 4) + (pd_class_sig=4 *
pse_avail_pwr=3 *

!option_classprobe))

CLASS_EV1_AUTO

do_autoclassification()

 tclassacs_timer_done *
autoclass_enabled *
(pd_class_sig ≠ 0)

 tclass_reset_timer_done

CLASS_EV2

do_classification()
tcle2_timer.start()

 tme1_timer_done

CLASS_EV4

do_classification()
tcle3_timer.start()
pd_allocated_pwr = min(6, pd_class_sig + 5)

 tcle3_timer_done *
pd_class_sig = temp_var *

(pd_class_sig<2 + pse_avail_pwr<7 + (pd_class_sig=3 *
pse_avail_pwr=7))

 tcle3_timer_done *
(pd_class_sig ≠ temp_var)

MARK_EV4

do_mark()
tme1_timer.start()

 tcle3_timer_done *
pd_class_sig = temp_var *

((pd_class_sig=2 *
pse_avail_pwr>=7) + (pd_class_sig=3 *

pse_avail_pwr=8))

 UCT

CLASS_EV5

do_classification()
tcle3_timer.start()
pd_allocated_pwr = min(8, pd_class_sig + 5)

 tcle3_timer_done *
(pd_class_sig = temp_var)

 tcle3_timer_done *
(pd_class_sig ≠ temp_var)

 tcle2_timer_done *
(!option_classprobe) *

(pd_class_sig ≠ 4)

 tcle2_timer_done *
((option_classprobe) + ((!option_classprobe) *

(pd_class_sig=4)))

 tlce_timer_done *
pse_avail_pwr < 3 *

pd_class_sig > pse_avail_pwr *
!option_classprobe

 tlce_timer_done *
(((pd_class_sig=4) *

(pse_avail_pwr >= 4)) + (option_classprobe *
pd_class_sig=4))

 tlce_timer_done *
(pd_class_sig <= pse_avail_pwr *

pd_class_sig ≠ 4) + (pd_class_sig=4 *
pse_avail_pwr=3 *

!option_classprobe)

 tme1_timer_done

 tme1_timer_done

4

Replace Figure 33–19 as follows (redraw it in Frame):

CLASS_EV1_LCE_PRI

do_classification_pri
start tlce_timer_pri
pd_cls_4PID_pri=FALSE

MARK_EV1_PRI

temp_var=pd_class_sig_pri
do_mark_pri
start tme1_timer_pri

tlce_timer_pri_done * (class_4PID_mult_events_pri *
(pd_class_sig_pri > 0) + (pd_class_sig_pri = 4) *

(pse_avail_pwr_pri >= 4))

MARK_EV_LAST_PRI

do_mark_pri
start tme2_timer_pri

tlce_timer_pri_done * (!class_4PID_mult_events_pri *
((pd_class_sig_pri < 4) + (pse_avail_pwr_pri = 3)) +

(pd_class_sig_pri = 0))

CLASS_EV2_PRI

do_classification_pri
start tcle2_timer_pri

tme1_timer_pri_done

MARK_EV2_PRI

do_mark_pri
start tme1_timer_pri

cle2_timer_pri_done * (pd_class_sig_pri=temp_var_pri) *
(class_4PID_mult_events_pri + (pse_avail_pwr_pri > 4))

tcle2_timer_pri_done *
(pd_class_sig_pri=temp_var_pri) *

!class_4PID_mult_events_pri
* (pse_avail_pwr_pri = 4)

IDLE1

tcle2_timer_pri_done *
(pd_class_sig_pri ≠ temp_var_pri)

CLASS_EV3_PRI

do_classification_pri
start tcle3_timer_pri

tme1_timer_pri_done

MARK_EV3_PRI

do_mark_pri
start tme1_timer_pri

cle3_timer_pri_done * (temp_var_pri = 4) *
(pd_class_sig_pri=3) *
(pse_avail_pwr_pri=5)

4PID3_PRI

pd_cls_4PID_pri=TRUE

tcle3_timer_pri_done *
(pd_class_sig_pri ≠ temp_var_pri) *

((pd_class_sig_pri=0) + ((pd_class_sig_pri=3)
* (temp_var_pri = 4) *

((pse_avail_pwr_pri<5)))

CLASS_RESET_PRI

do_class_reset_pri
start tclass_reset_timer_pri

tcle3_timer_pri_done *
(pd_class_sig_pri=temp_var_pri) *

((pse_avail_pwr_pri = 3) * (temp_var_pri = 4))

tcle3_timer_pri_done *
(pd_class_sig_pri=temp_var_pri) *

((pse_avail_pwr_pri > 3) + (temp_var_pri < 4))

tcle3_timer_pri_done *
(pd_class_sig_pri≠temp_var_pri) *

(pd_class_sig_pri≠0) *
((pd_class_sig_pri≠3) +

(temp_var_pri ≠ 4))

CLASS_EV4_PRI

do_classification_pri
start tcle3_timer_pri

 tme1_timer_pri_done (class_num_events_pri = 1) *
(temp_var_pri = 4)

 (class_num_events_pri > 1)
+ (temp_var_pri ≠ 4)

CLASS_EV1_LCE_4PID_PRI

do_classification_pri
start tcle_timer_pri

 tclass_rst_timer_pri_done

 (pd_class_sig_pri = 4)
* tlce_timer_pri_done

IDLE

 pd_class_sig_pri ≠ 4)
* tlce_timer_pri_done

4PID4_PRI

pd_cls_4PID_pri=TRUE

 tcle3_timer_pri_done *
(pd_class_sig_pri = 3)

IDLE3

 tcle3_timer_pri_done *
(pd_class_sig_pri ≠ 3)

UCT

Replace Figure 33–20 with that same state diagram, but replace “ pri” with “ sec”.

33.2.7 PSE classification of PDs and mutual identification

Change the text on page 106, line 5 as follows:

Physical Layer classification occurs before a PSE supplies power to a PD, when the PSE asserts a voltage in the range of V
Class as defined in Table 33–17 onto one or both pairsets. This is called a class event. The PD responds to each class event
with a current representing one of a limited number of classification signatures.

The assigned Class is the result of the PDs requested Class and the number of class events produced by the PSE as shown
in Table 33–13 and Table 33–14. See 33.3.6 for PD classification behavior. When a single- signature PD requests a higher
Class than a Type 3 or Type 4 PSE can support, the PSE shall assigns the PD to Class 3, 4, or 6, whichever is the highest that
it can support. When a dual-signature PD requests a higher Class than a Type 3 or Type 4 PSE can support, the PSE assigns
the PD Class 3 or 4, whichever is the highest that it can support.

33.2.7.2 PSE Multiple-Event Physical Layer classification

Make changes to 33.2.7.2 as follows:

Type 2 PSEs shall provide a maximum of two class events and two mark events. Type 3 PSEs shall provide a maximum of
four class events and four mark events for single-signature PDs and a maximum of three class events and three mark events
on each pairset for dual-signature PDs unless a class reset event clears the class and mark event counts. Type 4 PSEs shall
provide a maximum of five class events and five mark events for single-signature PDs and a maximum of four class events
and four mark events on each pairset for dual-sig- nature PDs unless a class reset event clears the class and mark event counts.
Type 3 and Type 4 PSEs may issue a class reset event to perform mutual identification or to discover the requested Class of
the PD when the PSE’s power budget only allows a single classification event.

All class event voltages and mark event voltages shall have the same polarity as defined for VPort PSE-2P in 33.2.4. Type 3 and
Type 4 PSEs may issue classification events on one or both pairsets, when connected to a single-signature PD and operating
over 4-pairs.

5

The PSE shall complete Multiple-Event Physical Layer classification and transition to the POWER ON, POWER ON PRI,
or POWER ON SEC state without allowing the voltage at the PI or pairset to go below VMark min, unless in the CLASS -
RESET, CLASS RESET PRI, or CLASS RESET SEC states. If the PSE returns to the IDLE state, it shall maintain the PI
voltage at VReset for a period of at least TReset min before starting a new detection cycle. If the PSE is in the CLASS RESET,
CLASS RESET PRI, or CLASS RESET SEC state it shall maintain the PI or pairset voltage at VReset for a period of at least
TReset min.

Fixes to the PD state diagram

Info (not part of baseline)

No default value is set for the variable pse dll power type. This causes an invalid comparison on the exit from
MDI POWER1 to MDI POWER2. Best solution is to set pse dll power type to ‘1’ in the IDLE state.

Append the IDLE state in Figure 33–32 with the statement as follows:

pse dll power type⇐ 1

6

