

Unbalance Rev. 3

MICHAEL PAUL

Summary

- A new variable "I_{Unbalance-2p}" was introduced in Draft 3.1 and is used in place of I_{Con-2p-unb} in some areas
- ► In Draft 3.1, I_{Con-2p-unb} has the same value as I_{Unbalance-2p}
- Unbalance interoperability has been compromised
 - I_{Con-2p-unb} limits were increased in Draft 3.1 in such a way that both the PSE and PD may now be more unbalanced and *interoperability is not guaranteed*
 - Fix I_{Con-2p-unb} limits

Class 5 Case Study

- I_{Unbalance-2p} (550mA) based on worst case cable/connection/diode model delivering 40W
- System Unbalance system models are calibrated with:
 - Diode area mismatch of 10

٢

- R_{PSE_alpha} = 2.182 (R_{PSE_alpha} is the gain factor in Eqn. 145-13)
- I_{Con-2p,max} was measured as 550mA and this was used as the I_{Con-2p-unb} limit until Draft 3.1

$$0 < R_{\text{PSE}_{\text{max}}} \leq \begin{cases} 2.182 \times R_{\text{PSE}_{\text{min}}} - 0.04 & \text{for Class 5} \\ 1.999 \times R_{\text{PSE}_{\text{min}}} - 0.04 & \text{for Class 6} \\ 1.904 \times R_{\text{PSE}_{\text{min}}} - 0.03 & \text{for Class 7} \\ 1.832 \times R_{\text{PSE}_{\text{min}}} - 0.03 & \text{for Class 8} \end{cases}$$
(145–13)

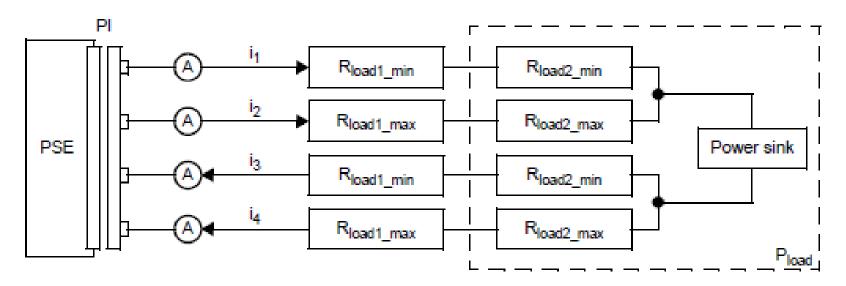
٦

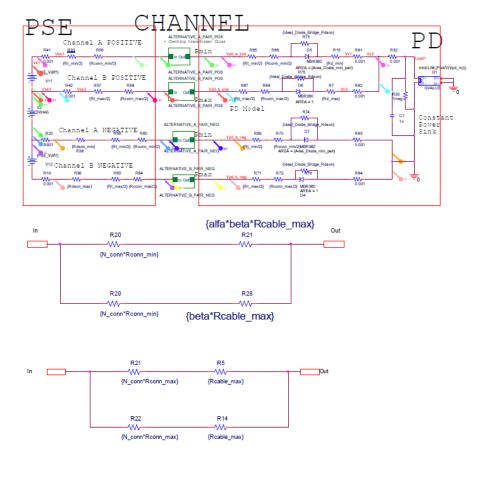
where

 R_{PSE_max} is, given R_{PSE_min} , the highest allowable common mode effective resistance in
the powered pairs of the same polarity R_{PSE_min} is the lower PSE common mode effective resistance in the powered pairs of the
same polarity

Class 5 Case Study

- ▶ Draft 3.1 I_{Unbalance-2p} was changed to 560mA to provide margin.
 - Now, using the PSE test from table 145-18, R_{PSE_alpha} can be changed to 2.67 and pass the compliance test
 - That is the PSE can be more unbalanced and pass the hardware compliance test




Figure 145–22—PSE PI unbalance specification and system resistance unbalance

Class 5 Case Study

- Plugging R_{PSE_alpha} = 2.67 back into the System Unbalance model gives I_{con-2p,max} = 571mA
- This PSE passes the compliance test but may fail to interoperate

Credit: darshan_01_0317

How do we add margin?

- We need two unbalance numbers
 - I_{Unbalance-2p} for the hardware unbalance test (component unbalance contribution)
 - I_{Con-2p-unb} for the system at runtime (software-controlled current threshold)
 - The hardware test limit must be less than the runtime unbalance limit to ensure margin
- ► I_{Unbalance-2p} is the hardware unbalance test
 - PSEs and PDs should not exceed I_{Unbalance-2p} when connected to the test load/source
 - I_{Unbalance-2p} should use the I_{Con-2p-unb} numbers from Draft 3.0
 - Draft 3.0 I_{Con-2p-unb} numbers define system performance given PSE, cable and PD unbalance allocations
- ► I_{Con-2p-unb} is the runtime test
 - A PSE should not remove power from a PD until at least I_{Con-2p-unb} is drawn from a pairset
 - I_{Con-2p-unb} should maintain the numbers specified in Draft 3.1

