
September 17, 2015

 IEEE P802.3bt – September 2015 Interim

September 17, 2015	

Dan Dove, DNS for LTC

September 17, 2015

 IEEE P802.3bt – September 2015 Interim

•  When we started this effort, the key objectives that
were identified were;
•  Convert the existing PSE State Diagram from a

flat “Spaghetti-Like” drawing to a hierarchical
design

•  Modify the design to support 4 pair operation
•  Sub-Objectives were identified

•  Retain fundamental operation of the State
Diagram to as close as possible as existing PSE
State Diagram

•  Avoid potential expansion of decisions that can
occur when doubling exit condition cases

2

Objectives of This Effort

September 17, 2015

 IEEE P802.3bt – September 2015 Interim

•  Solidify a proposal to create a higher-level heirarchy
that performs necessary functions to determine if PSE
should apply power to single-signature PD or dual-
signature PD, and then launch either one or two
instances of a pair-set controller.
•  Leaves Pairset State Diagram relatively un-touched

with only minor changes from Type 1 / Type 2
behavior

•  Requires some language/discussion about creation
of local variables for each pairset controller

•  Requires some language/discussion about
conditions within the pairset controller that would
lead the PSE to resume control at the higher level.

3

Objectives of This Presentation

PD_alt'<='Invalid'
Signature_Type'<='Invalid'

PSE_DISABLED'

mr_pse_enable = disable

do_connec=on_check'
do_PD_check'

CONNECTION_CHECK'

mr_pse_enable = enable

Pair_Set_Control'

mr_pse_alterna=ve'<='BOTH'
start'Tcc2det_=mer'

Set_PI_Alt_S' Set_PI_Alt_D'

Pair_Set_Control'

mr_pse_alterna=ve'<='A'
PS_Det_Fail <=False

Config_Alt_A'

mr_pse_alterna=ve'<='B'
PS_Det_Fail <=False

Config_Alt_B'

Pair_Set_Control'

(Signature_Type = single) *
PD_alt = Both

(Signature_Type = dual)

See Note:

Note: For dual capable PSEs with dual-signature PDs, this
diagram indicates the PSE will operate as two distinct
Pair_Set_Control state machines with distinct variables for
each.

PD_Alt = A +
PD_Alt = Both

Signature_Type = (Open + Invalid +
(single * !PD_Alt=Both))

start'Tcc2det_=mer'

PD_Alt = B +
PD_Alt = Both

Type 3 and Type 4 PSE Hierarchical State Diagram

PS_Det_Fail_A = True *
PS_Det_Fail_B = True

mr_ps_enable <= enable

mr_ps_enable <= enable mr_ps_enable <= enable

Depending on how you want to move
from tcc2det timer popping, you can
either return to connection check,or you
can stay within the ps_control process.

September 17, 2015

 IEEE P802.3bt – September 2015 Interim

•  Added entry for case where both Pairset Controllers determine they are
unattached to a valid PD.

•  For dual-signature PDs, its possible one pairset controller could be disconnected
while the other is powering or operating in a valid state. This would require both
pairset controllers to determine that they are disconnected before returning to the
higher level state block.

•  PSEs always have the ability to remove power and return to the higher level, this is
a mechanism to ensure automatic return when a cable is disconnected.

•  Corrected variable name to “Signature_Type” to be consistent with D1.2
for Connection_Check output.

•  Note: Case of PD Signature_Type=single, but PSE requiring power on only one
pairset returns to Disable State. In essence, this would be a Type 1 or Type 2 PD,
and does not want to receive power on 4 pairs.

•  PS_Det_FailA and PS_Det_FailB (formerly BeamMeUp) create a
nomenclature challenge. Global variables vs Local variables and how to
describe them.

•  For instance, each PS controller has a variable named PS_Det_Fail. The value of
that variable maps to the appropriate global variable PS_Det_FailA or PS_Det_FailB

•  I would like feedback on how to implement this paradigm in the spec.
•  Placement of start_tcc2det_timer

•  If it is a global variable, placement of its initialization state is probably correct.
•  If it is a local variable for each PS controller, probably should be moved to the

Config_Alt_A and Config_alt_B states.

5

PSE Heirarchical Top Level Diagram

pi_powered'<='FALSE'

PS_DISABLED'

mr_ps_enable = disable

Searching'

pi_reset + error_condition *
(mr_ps_enable = enable)

Delivering'Power'

Fault'

Test'

T12 T19
T20

T25
T30

T34

T6

T29 T22

T14A

Power'Denied'

T31
UCT

T1

T3

T2
mr_ps_enable = enable

T33

Return_To_Idle
RTI'

mr_ps_enable
= enable

T11

T8

(mr_ps_enable = force_power) *
!error_condition *
 !ovld_detected *
!short_detected

Figure 33-9b

Figure 33-9c

Figure 33-9d

Figure 33-9e

Figure 33-9f

Tcc2det_=mer_done

Type 3 and Type 4 PSE Pair Set Control State Diagram

September 17, 2015

 IEEE P802.3bt – September 2015 Interim

•  For Type 3 and Type 4 PDs that have dual-signature, each
pairset controller operates as if its an independent PSE,
subject only to the higher level PSE Control State Diagram.
•  This allows maximum flexibility on the type of

implementations that can be supported, and simplifies
the complex set of cases that we would have to address if
both pairsets were controlled by a single state machine.

•  For Type 3 and Type 4 PDs that have single-signature, a
single pairset controller operates on both pairsets. This is
done by using the variable mr_pse_alternative set to “both”.

•  There are documentation challenges that are required to
communicate how to define local variables for each pairset
controller, while simultaneously retaining the original Type 1
and Type 2 paradigm within the standard where all variables
were global.

7

PS Control Top Level Diagram

do_detec=on_done'*'
tdet_=mer_not_done'

pi_powered'<='FALSE'
mr_valid_signature'<='FALSE'
pse_dll_enabled'<='FALSE'

IDLE'

pi_ready'*'!power_applied'*'
(mr_ps_enable'='enable)'

START_'DETECTION'
start'tdet_=mer'
stop_Tcc2det_=mer'
do_detec=on'
mr_pd_class_detected'<='0'
pd_requested_power'<='2'

tdet_=mer_done'

DETECT_EVAL'
start_tpon_=mer'
PS_Det_Fail'<='False'(signature'='valid)'*''

(class_num_events'='0)'*'
(pi_available_power'≥'pd_requested_power)'*'

ted_=mer_done'' A

signature'='invalid'+'signature'='open_circuit'

Classifica=on'

A1 B SIGNATURE_INVALID'

(mr_ps_alterna=ve'='B)'*'
(signature'≠'open_circuit)'

(mr_ps_alterna=ve'='A)'+'
(mr_ps_alterna=ve'='B)'*'
(signature'='open_circuit)'

BACKOFF'

tdbo_=mer_done'

start_tdbo_=mer'
E

T12

CLASSIFICATION_EVAL'

C

T20 T19
(pd_requested_power'≤'
pse_available_power)'*'

ted_=mer_done''

(pd_requested_power'>'
pse_available_power)'+'
ted_=mer_not_done''

T2 T3

RTI

Delivering Power

T8,T11,T17, T21, T33, T34

DISABLED

RTI

Power Denied

T10

T15

T9

T5

T17

T7

T21

T14A

[(pd_requested_power'>'
pse_available_power)'+'
ted_=mer_not_done]'*
(class_num_events'='0)'*'
(signature'='valid)'

Delivering Power

Power Denied

pi_reset +
(error_condition *
mr_ps_enable = enable)

Figure 33-9g

Type 3 and Type 4 PS Searching
State Diagram

DETECTION_INVALID
PS_Det_Fail <=True

T10A For the case where dual
signature PD is found, each
pairset communicates to
higher level state machine
when that pairset is in a
state of invalid detection
and that Connection_Check
is required.

For single-signature PD,
also communicates to
upper level state machine
that its time to perform
Connection_Check again.

stop timer has been used
before in 802.3 state machines.

See Figure 24–11—Receive
state diagram IDLE state.

Implicit, when you start a
timer, you initiate it to original
count value. When you stop a
timer, it remains at existing
value. When it reaches final
value, it is done.

Tcc2det_=mer_done
T35

signature = valid should be
a binary logical argument, rather than
having multiple values.

UCT'

September 17, 2015

 IEEE P802.3bt – September 2015 Interim

•  To ensure that the time from Connection Check to Detection on
each pairset does not exceed acceptable limits, the
tcc2det_timer is started after Connection Check, and stopped at
the beginning of detection.

•  The concept of stopping a timer has been used previously within 802.3
•  We need to think about the global/local nature of this variable. If one pairset

controller stops the timer, is that sufficient or do we require that both pairset
controllers must stop the timer to ensure detection on both pairsets is
complete prior to tcc2det_timer_done?

•  One could have the stop_timer action be on a local version of the timer (ie:
Both controllers have one and the global variable tcc2det_timer_done is true
only both local timers are done)

•  Or we could have tcc2det_timer_done be a global variable that is true if
either timer is stopped.

•  Addition of the Detection_Invalid state
•  Not required for Type 1 or Type 2 PSEs, this state is used to communicate to

the higher level block that the PS controller has failed to detect a PD or that
local tcc_2det_timer has expired.

9

Searching Block Diagram

September 17, 2015

 IEEE P802.3bt – September 2015 Interim

•  Added “PS_Det_Fail <= False” into Detect_Eval state since the
detection would have been successful and therefore this
variable should be set to False.
•  Its possible a pairset controller may have cycled multiple

times through IDLE, Start_Detection and Detection_Invalid
states before successfully completing Detection. So this is
necessary to ensure the PSE Controller doesn’t retake
control of the pairset.

10

Searching Block Diagram (cont)

pi_powered'<='TRUE'

POWER_UP'

Ready_to_Power*''
(PSE_TYPE'≥'2')'

Does'this'change'to'≥'2''from'=2'

(signature'='valid)'*'
(class_num_events'='0)'*'

(pse_available_power'≥'pd_requested_power)'*'
ted_=mer_done''

T12 (pd_requested_power'≤ pse_available_power)'*'
ted_=mer_done'T19

set_parameter_type'

SET_PARAMETERS'

pse_dll_enabled ⇐ TRUE'

DLL_ENABLE'

Ready_to_Power*''
(PSE_TYPE'='1)'''<='Does'this'go'away?'

UCT'

(PSE_TYPE'='2)'*'
(pd_dll_power_type'='2)'*'

(parameter_type'='1)''

T29

short_detected'+'
'ovld_detected'+'

'op=on_vport_lim'
mpdo_=mer_done'*'
!short_detected'*'
!ovld_detected'*''
!power_not_available'*'
!op=on_vport_limpower'

T30

POWER_ON'

pse_dll_capable'*''
!pse_dll_enabled'

UCT'

T27

T25
tpon_=mer_done'

RTI

T32 T28

T23

T24

RTI

T26

Searching

T31

Fault

Ready_to_Power'<='(=nrush_=mer_not_done'*'
legacy_powerup)'+'=nrush_=mer_done]'*'
 power_applied'*''
tpon_=mer_not_done'

Power Denied

Type 3 and Type 4 PS Delivering Power State Diagram

September 17, 2015

 IEEE P802.3bt – September 2015 Interim

•  PSE_Type = 2?
•  This term in the state diagram needs to be changed to address Type 3 and Type 4

PSEs.
•  Do we assume that the PSE Type will be Type 3 or Type 4, or else the Type 1 and

Type 2 state diagram takes precedence?
•  Currently, this state diagram is not intended to deprecate Type 1 and Type 2 state

diagrams, so should we remove references to such, or leave them?
•  PSE_Type = 1?

•  Do we remove this transition from the diagram?

•  DLL_Enable?
•  In the case of a dual-signature PD, both PS controllers may set this variable.
•  Given that it’s a single PSE, do we just let either controller set it when it gets to

this location? (ie: It’s a global variable that is set by either controller)
•  For single-signature PDs, only one controller is used, and would set it.
•  For dual-signature PDs, either controller would set it which is appropriate

since one controller may not ever reach the Power_On state.

12

Delivering Power Block Diagram

TEST_MODE'

pi_powered ⇐ TRUE

TEST_ERROR'

pi_powered ⇐ FALSE

T8

mr_ps_enable'='enable'

mr_ps_enable'='enable'

T6

(mr_ps_enable'='force_power)'*'
!error_condi=on'*'
!ovld_detected'* '
!short_detected'

RTI

T11

RTI

T7

(short_detected'+'
'ovld_detected)'*''

(mr_ps_enable'='force_power)'

Type 3 and Type 4 PS Test State Diagram

POWER_DENIED'

(pd_requested_power'>'
pse_available_power)'+'

ted_=mer_not_done' T20

[(pd_requested_power'>'
pse_available_power)'+'
ted_=mer_not_done]'*
(class_num_events'='0)'*'
(signature'='valid)'

T14A

power_not_available'* !short_detected'*'
!ovld_detected'* tmpdo_=mer_not_done'*'

!op=on_vport_lim'

T31

T33

RTI

UCT'

Delivering Power

Searching Searching

Type 3 and Type 4 PS Power Denied State Diagram

ERROR_DELAY'

ted_=mer_done'+'
op=on_detect_ted'

start ted_timer
pi_powered ⇐ FALSE

=nrush_=mer_done'*'
[legacy_powerup'+'
!power_applied'+'
'(IPort'≥'IInrush)]'

T22 short_detected'+'
'ovld_detected'+'
'op=on_vport_lim'

T29

T34

RTI

Delivering Power

Type 3 and Type 4 PS Fault State Diagram

September 17, 2015

 IEEE P802.3bt – September 2015 Interim

 The goal is to allow the widest range of implementation possible.

One can capture portions of data used for the “Detection” function during Connection
Check and store them, then later when operating within the PS Control state machine,
use that data in conjunction with other data captured during do_detection to complete
the detection process. This would potentially speed up the process and ensures that a
robust detection is completed no longer before power is applied than the current Type
1 and Type 2 state diagram.

OR

One can perform Connection Check and disregard the data captured after the decision is
made to exit that state, and then when entering the DETECTION state, perform an
existing do_detection function as currently implemented.

The former would be faster and reduce the number of steps required to complete
detection.

16

Connection Check & Detection

September 17, 2015

 IEEE P802.3bt – September 2015 Interim

•  Add new function do_PD_check as follows:

do_PD_check

This function is to be used only for Type 3 and Type 4 PSEs and works in conjunction
with connection check defined in Section 33.2.5.0 and determines whether a PD
can accept power over a single alternative PI configuration or both at the same
time. This function returns the following variables:

PD_alt: This variable indicates the type of PD signature is connected to the PI, with
respect to 4-pair operation.

Values:

A: The PSE has determined PD appears capable of accepting power only on Alt-A.
B: The PSE has determined PD appears capable of accepting power only on Alt-B.
Both: The PSE has determined PD appears capable of accepting power on Alt-A and Alt-B
Invalid: The PD_check function has not determined a valid value.

17

Example Text for PD_Check

September 17, 2015

 IEEE P802.3bt – September 2015 Interim

A Function returns a value for a variable or set of variables.
A Function call does not necessarily mean that the actions required to get the variable

values must take place at the time of (or after) the function call is made.
For example: do_connection_check returns a value to the variable Signature_Type.

To perform do_connection_check, a number of stimuli and measurements may occur in
order to determine the value of Signature_Type.

The stimulus (to both pairsets) and resultant measurements MAY be used to capture
values that can later be used for do_detection or do_PD_check analysis.

Later functions are not necessarily required to perform the same stimulus and
measurements to complete the assessment of their variables, as long as the timing of
the stimulus and measurement falls within an acceptable timeframe for making those
measurements.

What does this mean? (Bottom Line)
Some of the stimulus and measurements made to conclude a valid detection *may* have

been performed during Connection Check or PD Check if the implementation ensures
those values are still “fresh enough” to ensure validity.

The order of the function calls determines the order of assessing values captured, not
necessarily the order or timing of the measurements being made.

18

A Discussion on Functions

September 17, 2015

 IEEE P802.3bt – September 2015 Interim

19

Summary
•  I believe the proposed approach, having a higher level hierarchical
block that performs Connection_Check and PD_check to direct operation,
enables us to keep the existing PSE control state machine very close to the
original Type 1 and Type 2 designs.
•  Key questions remain about how to deal with local (pairset) variables
vs global (PSE) variables within the document.

•  We might provide text describing all Type 3 and Type 4 pairset
state diagram variables as local unless otherwise noted

•  We might modify their names to communicate loc vs glob
•  We should carefully assess what conditions may occur on a

pairset that would require immediate transition up to the
PSE_Disabled state.
•  Currently, only failure of both pairsets to detect, or failure to

enter detection within tcc2det leads to this transition.
•  Pairset faults only return the pairset controller to its own

IDLE state. They do not return the entire PSE to its Disabled
state.

•  While review additional work is required, I recommend that the Task
Force adopt the updated state diagrams, incorporate them into
FrameMaker format, and use this as the basis for further review &
advancement of the draft.

September 17, 2015

 IEEE P802.3bt – September 2015 Interim

20

