# Power Classes, Turn On/Off Voltages, and Sleep Mode Current Thresholds

**David Abramson** 

**Texas Instruments** 

IEEE802.3bu Task Force

July 2015




### **Items Addressed in this Presention**

- The power class table (Table 104-1) needs updating to take the following into consideration:
  - System Stability
  - Hysteresis between turn on and turn off thesholds
  - Accuracy of these thresholds in the PD
- The PD power table (Table 104-6) needs updating to take the following into consideration:
  - The new turn on and turn off thresholds
  - New transition thresholds for sleep mode that are based on economic feasibility.



### **Power Class Table**

- A little background on how PoE handles these issues (based on my own reverse engineering of the numbers):
  - The max current was backed off from the stability point by a factor of 0.6 (I assume due to temperature rise concerns).
  - The max turn on threshold of the PD is slightly below the minimum PD voltage (based on normal operation and channel loss).
  - The min turn off threshold is well below the stability point of the system and is meant to shut down the PD cleanly if something goes wrong.
  - Clause 33 allowed for 24% of VPSE min for hysteresis between turn on and turn off and required an accuracy of 15% from the PD to implement half of the maximum hysteresis allowed.
- We can copy this method and choose how much we want to back off the max current by.
  - Only the unregulated 12V class has issues with turn on/off accuracy due to the sleep/wake range setting a hard boundary.



### **Suggested Power Class Table**

|                       | 12V Classes |       |       | 24V Classes |       |       | 48V Classes |       |       |       |
|-----------------------|-------------|-------|-------|-------------|-------|-------|-------------|-------|-------|-------|
|                       | Unreg       | I     | II    | Unreg       | I     | II    | Unreg       | Ι     | Π     | III   |
| VPSE Max              | 18          | 18    | 18    | 28          | 28    | 28    | 56          | 56    | 56    | 56    |
| VPSE min              | 5.3         | 14    | 14    | 10.6        | 21.6  | 21.6  | 21.2        | 43.2  | 43.2  | 43.2  |
| RPSE max              | 4           | 4     | 1     | 4           | 4     | 1     | 4           | 4     | 4     | 1     |
| Rloop max             | 6.5         | 6.5   | 6.5   | 6.5         | 6.5   | 6.5   | 6.5         | 6.5   | 6.5   | 6.5   |
| IPI max               | 0.13        | 0.42  | 0.50  | 0.32        | 0.55  | 0.77  | 0.64        | 0.98  | 1.31  | 1.55  |
| Suggested Ppd         | 0.50        | 4.50  | 5.00  | 2.50        | 9.50  | 12.50 | 10.50       | 25.00 | 45.00 | 51.00 |
| Suggested PD Von max  | 4.80        | 12.00 | 12.00 | 9.00        | 18.00 | 18.00 | 18.00       | 36.00 | 36.00 | 36.00 |
| Suggested PD Voff min | 4.30        | 9.00  | 9.00  | 6.75        | 13.50 | 13.50 | 13.50       | 27.00 | 27.00 | 27.00 |



### **Sleep Mode Thresholds (I)**

- The total system dynamic range is determined by the max current and the MPS current.
  - The proposed Power Class table has a max current of about 1.5A.
  - The current draft has an MPS current (Ihold) range of 5-15uA (10uA).
    - This gives a total dynamic range of 150,000.
- Again, let's compare these numbers to PoE.
  - 802.3at had an MPS range of 5mA and a max current of 600mA
    - This is a dynamic range of 120.
  - 802.3bt is proposing an MPS range of 10mA and a max current around 1.7A.
    - This is a dynamic range of 170 (an increase of ~42%).



## **Sleep Mode Threshold (II)**

- The wake and sleep modes in PoDL can be split apart (by switching the sense resistor for example), leaving two separate dynamic ranges, where the threshold between them is lwakeup – Isleep.
  - This would reduce the dynamic range required for each mode to sqrt(150K) = -387.
- The upper threshold (Iwakeup) will limit the lower bound power dissipation of a PD in POWER\_ON mode.
- Isleep must be below Iwakeup in order to maintain a stable system.
- If the PD goes from full power to disconnected, the transition from POWER\_ON to sleep mode will affect the disconnect timings.
- The voltage drop across the sense element can not be overly large due to the small differences between 3.9V and Voff min.
  - My suggested Voff min for the 12V unregulated class is actually 3.75 in order to try to allow for some amount of hysteresis and accuracy tolerance.
  - Sleep mode doesn't seem possible for this class.
- Will the voltage transients of the unregulated classes cause problems?
- Will leakage be a problem when trying to sense a disconnect (particularly at 48V)?



### **Some Example Calculations**

- These Calculations are based on the current draft numbers:
  - The PD sleep current max = 100uA
  - The PD wake current is between 3mA and 10mA.
  - Both PSE thresholds are TBD, but would need to be 100uA and 3mA if no margin was added.
  - This means a 48V system would not allow the PD to use less than 56V\*10mA = 560mW of power in POWER\_ON mode.
  - The dynamic range of the POWER\_ON mode is 1.5A/3mA = 500.
  - The dynamic range of the Sleep mode is 3mA/10uA = 300.



### **Sleep Mode Conclusions**

- We need to increase the MPS current (and wake currents) in order to decrease the dynamic range of the system.
  - Can we lower the duty cycle in order to achieve this?
  - Do the current numbers take into account the 33% duty cycle that is already in the spec? What is the number that the automotive industry actually needs.
- There is no other magic to make this work and we need to spend significant time making sure the issues outlined are not unsolvable.

