

Revised Wakeup and Sleep Scheme for PoDL

Andrew Gardner

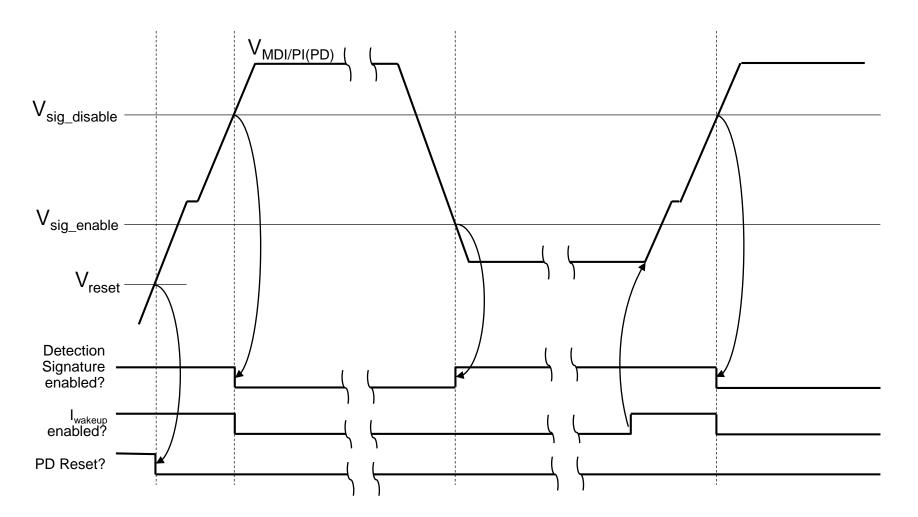
Linear Technology

Presentation Objectives

- Propose a revised wakeup and sleep scheme for PoDL that addresses concerns of economic and technical feasibility presented at the IEEE802.3bu meeting in July 2015.
- Present changes to baseline text and state diagrams required to implement the proposal.

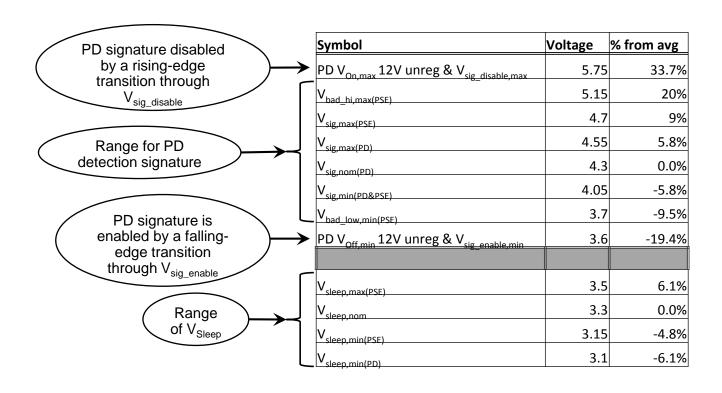
Issues with Wakeup and Sleep Scheme in D1.2

- The current sense dynamic range requirements of 500 and 300, respectively, for the proposed POWER_ON and SLEEP states are too big.
- Given the ultra-low currents that will be required by a sleeping PoDL PD, PoE style DC disconnect is not technically feasible.
- V_{Sleep} and V_{Sig} need to be defined so as to be compatible with the V_{ON} and V_{OFF} thresholds required for the unregulated 12V automotive power class.



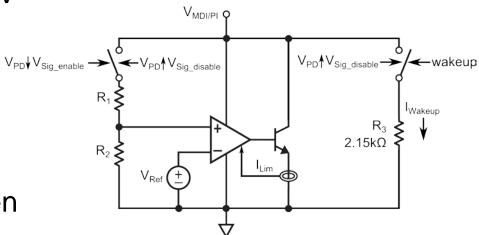
New Wakeup and Sleep Scheme Proposal

- Revert to MPS requirements that are comparable with what is currently being proposed in 802.3bt:
 - \bullet 10mA < I_{Hold} , T_{MPS} > 60ms, 300ms < T_{MPDO} < 400ms
- Instead of removing power when T_{MPDO} expires, the PSE will reduce voltage at the PI to 3.3V with limited output current.
 - •This low power level should not present a hazard to the PD if it is hot-plugged.
- The PD constant voltage detection signature needs to be changed to be greater than $V_{\rm Sleep}$ and less than $V_{\rm ON}$ for the unregulated 12V class.
- The PD signature is enabled by a falling-edge through $V_{\text{sig_enable}}$ and disabled by a rising-edge through $V_{\text{sig_disable}}$.
- A wakeup signature current switched in shunt with the detection signature device allows a sleeping PD to request power-up.
 - A PD that is hot-plugged into a sleeping PI also presents the wakeup current when exiting RESET in order to request initial power-up.



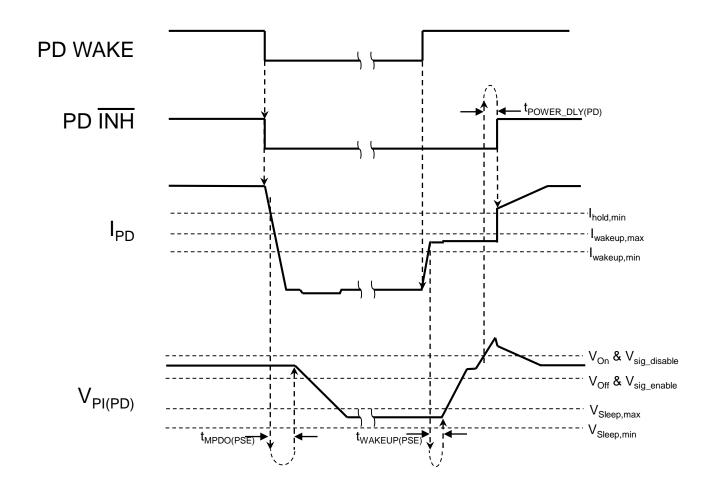
PD Detection and Wakeup Signature Timing Waveforms

Thresholds for V_{sig_disable}, V_{sig_enable}, V_{Sleep}, & Unregulated 12V Class V_{On} & V_{Off}

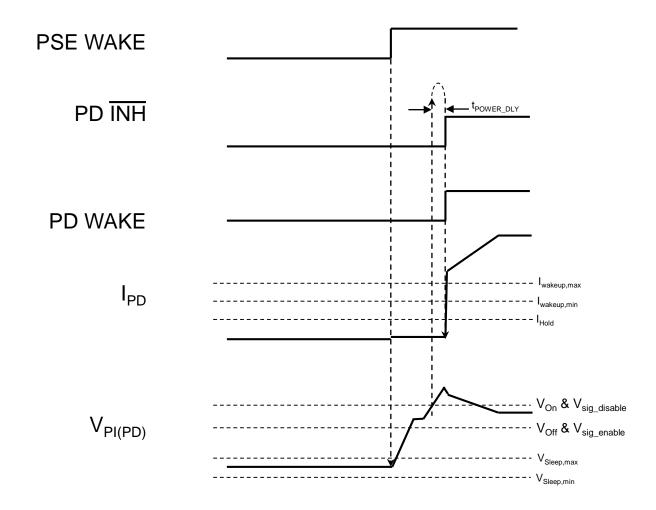


^{*}See Annex A for latest power class table.

PD Detection and Wakeup Current Signatures


- Constant voltage detection signature moves from 3V to 4.3V to make room for V_{Sleep}.
- A resistor connected in shunt with the detection signature creates a wakeup current signature when a sleeping PD needs to be powered-up or when a PD exits RESET.
- Detection signature is enabled by a falling edge through V_{Sig_enable}.
- Detection signature and wakeup current signature are disabled by a rising edge through V_{Sig_disable}.

Simplified Schematic of Proposed Detection and Wakeup Signature



PD Initiated Sleep and Wakeup Transition Waveforms (Unregulated 12V Class)

PSE Wakeup Forwarding Waveforms (Unregulated 12V Class)

- 104.1 Overview
 - f) A method of scaling supplied power voltage back to the detect sleep level when normal operating power voltage is no longer requested or required.
- 104.3 Power sourcing equipment (PSE)
 - •To remove normal operating voltage power when no longer requested or required, returning to the searching state transitioning to the SLEEP state. An unplugged link segment is one instance when normal operating voltage power is no longer required. In addition, voltage and power classification mechanisms exist via SCCP to provide the PSE with detailed information regarding the requirements of the PD and vice versa.

• 104.3.3.1 Overview

Prior to application of power of normal operating voltage at the PI, the PSE shall performs detection in order to verify that a valid PD is present. A PSE may communicate with the PD prior to the application of normal operating voltage using SCCP.

After normal operating voltage has been applied, the PSE monitors the PI for a valid maintain power signature (MPS) from the PD. In the event a valid MPS is not present, the PSE reduces the voltage at the PI to the range of V_{Sleep} . If an external wakeup request is received or if a valid wakeup current signature is detected at the PI, the PSE confirms that a valid PD is still present by re-performing detection before re-applying normal operating voltage to the PI.

• 104.3.6.4 Output Current

A PSE operating in the POWER_ON state shall consider a PD sleep request valid if I_{Port} -averaged over a sliding window t_{Sleep} -wide is less than or equal to I_{Sleep} -min.

A PSE operating in the POWER_ON state shall enter the SLEEP_SETTLE state if a valid MPS is not present at the PI.

A PSE operating in the SLEEP_SETTLE state shall discharge the PI to the range of V_{Sleep} with a current greater than $I_{discharge}$.

104.3.6.4.1 Wakeup current signature detection

A PSE operating in the SLEEP state shall consider a PD wakeup request valid if I_{Port} is greater than I_{Wakeup} min is in the valid range of I_{wakeup} for a minimum of t_{Wakeup} (see Table 104-3).

A PSE operating in the SLEEP state shall consider a PD wakeup request invalid if I_{Port} is greater than $I_{wakeup_bad_hi}$ or less than $I_{wakeup_bad_lo}$. A PSE may consider a PD wakeup request valid or invalid if I_{port} is in the band between $I_{wakeup_bad_hi}$ and $I_{wakeup_bad_lo}$ max or the band between I_{wakeup} min and $I_{wakeup_bad_lo}$.

• 104.3.6.6 Turn off time

The specification for T_{Off} in Table 104–3 shall apply to the discharge time from V_{PSE} in the POWER_ON state to V_{Off} V_{Sleep} with a test resistor of TBD $k\Omega$ ±1% attached to the PI. In addition, it is recommended that the PI be completely discharged when the PSE is not enabled turned off. T_{Off} starts when V_{PSE} drops 1 V below the steady-state normal operating voltage value after the pi_powered variable is cleared. T_{Off} ends when $V_{PSE} \leq V_{Off}$ V_{Sleep} max. The PSE remains in the IDLE state as long as the average voltage across the PI is V_{Off} . The IDLE state is the state when the PSE is not in detection, classification, or normal powering states.

104.3.7 PSE power removal

Power shall be removed from the PSE PI in the absence of the PD Maintain Power Signature while the PSE is operating in the SLEEP state.

Power-Normal operating voltage shall be removed from the PSE PI in the absence of the PD Maintain Power Signature while the PSE is operating in the SLEEP POWER_ON state.

104.3.7.1 PSE Maintain Power Signature (MPS) requirements

A PSE shall consider the MPS to be present if I_{Port} averaged over a sliding window T_{MPS} wide is greater than or equal to I_{Hold} max. A PSE shall consider the MPS to be present if I_{Port} is greater than or equal to I_{Hold} max for a minimum of T_{MPS} .

A PSE may consider the MPS to be either present or absent if I_{Port} averaged over a sliding window T_{MPS} wide is in the range of I_{Hold}. A PSE may consider the MPS to be either present or absent if I_{Port} is in the range of I_{Hold}.

A PSE shall consider MPS to be absent if I_{Port} averaged over a sliding window TMPS wide is less than or equal to I_{Hold} min. A PSE shall consider MPS to be absent if I_{Port} is less than or equal to I_{Hold} min. Power Voltage shall be removed from reduced to the range of V_{Sleep} at the PI when the MPS has been absent for a duration greater than T_{MPDO} .

			1	_		1		_
Item	Parameter	Symbol	Unit	Min	Max	Class	Typ e	Additional Information
1a 1	DC output voltage during POWER_ON state	V _{PSE(PON)}	V	Class V _{PSE(min)}	Class V _{PSE(max)}			See 104.3.6.1 and Table 104-1
1b	DC output voltage during sleep	V _{PSE(SLP)}	¥	4	V _{off(min)}			
11	Turn off voltage DC output voltage during SLEEP state	₩ _{OFF} V _{Sleep}	V	<i>TBD</i> 3.15	TBD 3.5			<i>TBD</i> See 104.3.6.6
13	PD Maintain Power Signature dropout time limit	T _{MPDO}	s	0.3	0.4			See 104.3.7.1
14	Maintain Power Signature window time limit	t _{MPS}	ms	90 60	110			
15	MPS Current Threshold	I _{Hold}	А	0.005	0.010			
16	Sleep current threshold	↓ _{Sleep}	uA					
17	Sleep current threshold sliding window	ŧ _{Sleep}	ms	90	110			
16	Valid wakeup current signature range	I _{wakeup_}	mA	1.25	1.85			See 104.3.6.5 104.3.6.4.1
17	Invalid wakeup current signature high range	wakeup_bad_hi	mA	2.5				
18	Invalid wakeup current signature low range	lwakeup_bad_lo	mA		0.5			
19	Restart timer delay	t _{Restart_timer}	ms	100				

Table 104-3 PSE output requirements

Item	Parameter	Symbol	Unit	Min	Max	Additional Information
1	Open circuit voltage	V _{oc}	V	3.5	4.5-5.5	
2	Short circuit current	I _{sc}	mA	20	30	
3	Valid test probe current	I _{Valid}	mA	14	10	
7	Valid PD detection range measured at PSE PI	V_{good_PSE}	V	2.8 4.05	3.2 4.7	
8	Invalid PD detection signature high range measured at PSE PI	V _{bad_hi_PSE}	V	5.15		
9	Invalid PD detection signature low range measured at PSE PI	V _{bad_low_PSE}	V		3.7	

Table 104-2 PSE PI detection state electrical output requirements

• 104.4.3.1 Overview

If the PD input voltage is less than $V_{\text{sig_disable}}$, the PD shall present a constant voltage signature, defined in Section 104.4.4. SCCP may be used for communication between the PD and PSE when $V_{\text{PD}} < V_{\text{sig_disable}}$.

When the input voltage exceeds $V_{\text{sig_disable}}$, the PD shall remove the constant-voltage signature from the PI and shall wait $t_{\text{pwr_delay}}$ before drawing power from the MDI. In the event of a PD fault or removal of the MPS, a rising V_{PD} edge through the $V_{\text{on}}(\text{max})$ threshold shall cause the PD to re-enable MDI power after a delay of $t_{\text{pwr_delay}}$.

A falling-edge of the PD input voltage through $V_{\text{sig_enable}}$ enables a constant voltage signature, defined in Section 104.4.4. When the input voltage rises through the $V_{\text{sig_disable}}$ the PD disables its constant-voltage signature.

A PD requests detection and wakeup while the constant voltage signature is enabled by presenting a valid wakeup current signature. SCCP may also be used for communication with the PD by the PSE when the constant-voltage signature is enabled.

A rising edge through the V_{On} threshold causes the PD to enable MDI power after a delay of t_{pwr_delay} . A falling edge through the V_{Off} threshold causes the PD to disable MDI power.

104.4.4 PD signature

A PD shall presents a valid detection signature when V_{PD} is less than drops below V_{sig_enable} while it is in the DO_DETECTION state when it is requesting power via the PI, but is not powered via the PI per Figure 104–6. When V_{PD} rises through $V_{sig_disable}$, a PD shall remove the current draw of the detection signature.

A PD shall present a detection signature, either valid or non-valid, at the PI. The detection signature shall consists of a current limited, constant voltage per Table 104–4 when measured by the PSE.

104.4.6.1 PD input voltage

The PD shall operate in the SLEEP and WAKEUP states PD_SLEEP state with an input voltage in the range of greater than V_{Sleep_PD} min as specified in Table 104-6.

• 104.4.6.5 Input current

During operation in the SLEEP_PENDING and SLEEP states, the PD shall not draw current averaged over a sliding window t_{Sleep} seconds wide in the range of I_{Sleep} in excess of I_{Sleep} as specified in Table 104-6.

During operation in the WAKEUP state, the PD A PD that requires detection and power-up shall draw current in the range of I_{Wakeup_PD} for at least t_{Wakeup_PD} as specified in Table 104-6.

104.4.7 PD Maintain Power Signature

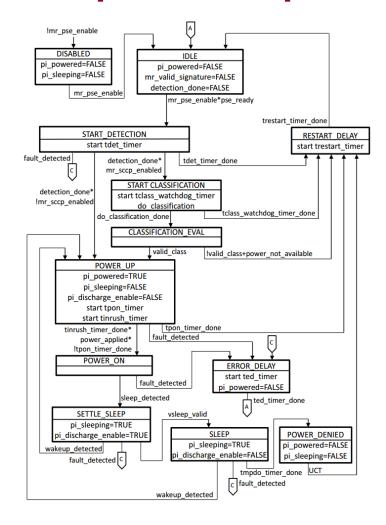
In order to maintain power full input operating voltage, the PD shall provide a valid Maintain Power Signature (MPS) at the PI. The MPS shall draw current averaged over a sliding window TMPS wide equal to or above IHold_PD(min). The MPS shall consist of current draw equal to or above I_{hold_PD} for a minimum duration of T_{MPS_PD} measured at the PD PI followed by an optional MPS dropout for no longer than T_{MPDO_PD}. PDs that do not require power full input operating voltage shall remove the current draw of the MPS from the PI.

Parameter	Conditions	Unit	Min	Max
V_{good}	4 3mA <i<sub>connector<40 11mA, I_{connector} rising from 0 PD exiting RESET</i<sub>	V	2.9 4.05	3.1 4.55
I _{signature_limit}	V _{connector} >3.5V-V _{connector} <5.15V	mA	20	50 20
V _{sig_disable}	V _{connector} rising	V	3.9	5.75
V _{sig_enable}	Hysteresis V _{connector} falling	V	3 3.6	

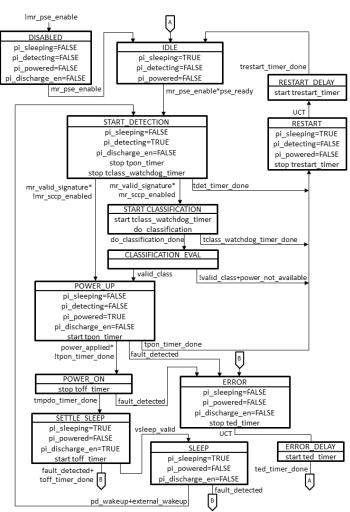
Table 104-4 Valid PD detection signature characteristics, measured at PD connector

Parameter	Conditions	Unit	Min	Max
V_{bad_hi}		V	3.2 5.15	
V_{bad_lo}		V		2.8 3.7

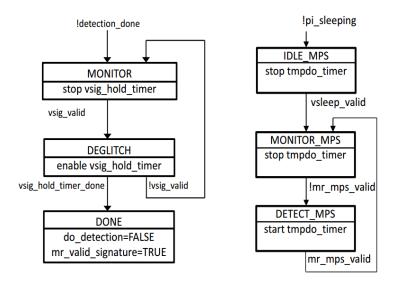
Table 104-5 Non-valid PD detection signature characteristics, measured at PD connector

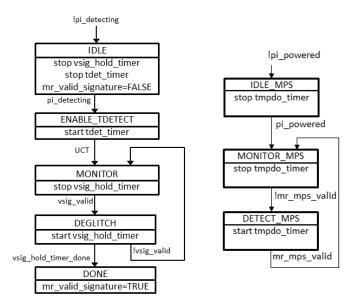


Item	Parameter	Symbol	Unit	Min	Max	PD Type	Additional Information
8	PD Maintain Power Signature time	T _{MPS_PD}	ms	75			See 104.4.7
89	PD Maintain Power Signature dropout time limit	T _{MPDO_PD}	ms		250		
9 10	MPS current threshold limit	I _{hold_PD}	mA	11			See 104.3.7.1 104.4.7
10 11	Power supply voltage during SLEEP and WAKEUP states	V _{Sleep_PD}	V	3.9 3.1	V _{off(min)}		See 104.4.6.1
11 12	SLEEP state current limit	I _{Sleep_PD}	μΑ		100		See 104.4.6.5
12 13	Wakeup current	I _{wakeup_} PD	mA	3 1.3	10 1.8		3.1V <v<sub>PD<3.5V</v<sub>


Table 104-6 PD power supply limits

PSE, State Machine Changes for Proposed Wakeup and Sleep Scheme


D1.2 PSE Port State Machine


Proposed PSE Port State Machine

PSE, Detection, and MPS State Machines for Proposed Wakeup and Sleep Scheme

D1.2 Detection and MPS State Machines

Proposed Detection and MPS State Machines

New and Modified Variables for Proposed PSE State Machines

• detection_done

A Boolean variable indicating that a valid detection sequence has been completed prior to entering the POWER_UP state. True when a valid detection sequence has been completed.

external_wakeup

A Boolean variable that indicates the PSE has received an external wakeup request and shall re-detect the PD before re-applying the full operating voltage to the PI.

pd_wakeup

A Boolean variable that indicates the PSE has detected a valid wakeup current signature at the PI and shall re-detect the PD before re-applying the full operating voltage to the PI.

pi_detecting

A Boolean variable that controls the circuitry the PSE uses to detect a valid PD signature. If true, the PSE forces a voltage limited detection current and senses the voltage at the PI in order to determine if a valid PD signature is present.

New and Modified Variables for Proposed PSE State Machines

pi_powered

A Boolean variable that controls the circuitry the PSE uses to power the PD. If false, the PSE shall not apply power the normal operating voltage to the PI (default). If true, the PSE is applying power normal operating voltage to the PI.

pi_sleeping

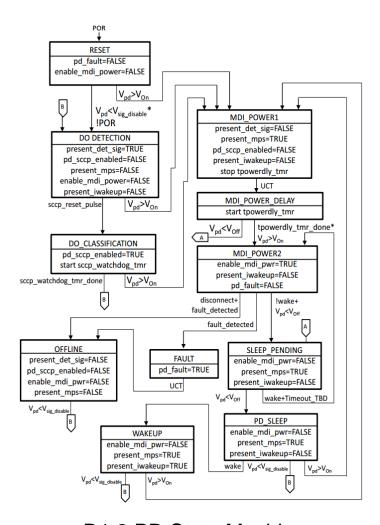
A Boolean variable that controls the circuitry the PSE uses to power the PD. True when the PSE applies V_{Sleep} at the PI. If true, the PSE is applying V_{Sleep} at the PI.

• sleep_detected

A Boolean variable indicating that the average value of IPort is less than or equal to the ISleep threshold current and that the PSE shall transition to the SLEEP state. See 104.3.6.4.

New and Modified Timers for Proposed PSE State Machines

• tinrush_timer


A timer used to monitor the duration of the inrush event.

toff_timer

A timer used to limit the time the PSE attempt to discharge the PI to the range of V_{sleep} . If toff_timer expires during the SETTLE_SLEEP state, an error condition exists, and the port state machine enters the ERROR state.

PD State Machine Changes for Proposed Wakeup and Sleep Scheme

POR RESET present det sig=TRUE present iwakeup=TRUE MDI POWFR1 present mps=FALSE present det sig=FALSE enable mdi power=FALSE present iwakeup=FALSE pd sccp enabled=FALSE pd sccp enabled=FALSE pd fault=FALSE stop tpowerdly tmr V_{pd}<V_{sig enable} !POR MDI POWER DELAY start tpowerdly tmr DO DETECTION tpowerdly tmr done* present det sig=TRUE $V_{pd}>V_{On}$ present iwakeup=TRUE MDI POWER2 pd sccp enabled=FALSE enable mdi pwr=TRUE stop sccp watchdog tmr present mps=TRUE V_{pd}>V_{sig disable} sccp reset pulse disconnect + fault detected FAULT DO CLASSIFICATION pd fault=TRUE pd sccp enabled=TRUE UCT start sccp watchdog tmr do_sccp DISCONNECT sccp_watchdog_tmr_done present_mps=FALSE $V_{pd} > V_{sig_disable}$ enable mdi pwr=FALSE wakeup* V_{pd}<V_{sig_enable} V_{pd}>V_{on} PD SLEEP present det sig=TRUE V_{pd}>V_{sig_disable}

D1.2 PD State Machine

Proposed PD State Machine

New and Modified Variables for Proposed PD State Machine

disconnect

A Boolean variable that indicates a PD no longer requires power the normal operating voltage from the PI and has reduced its port current below the MPS threshold current, I_{Hold}.

wake wakeup

A Boolean variable that indicates when a PD requires full power at the PI and when it is ready to go to sleep. True when full power is required and false when ready for sleep.

Summary

- A proposal for a revised wakeup and sleep scheme that addresses issues raised at the July plenary meeting was proposed.
- Changes to baseline text and state diagrams were presented.

Questions?

Annex A – Proposed Power Class Table

System Class														
	12V unreg		12V reg		24V unreg		24V reg		48V unreg		48V reg		(Open)	Show in table 104-1?
	(a)	(b)	(a)	(b)	(a)	(b)	(a)	(b)	(a)	(b)	(a)	(b)		104-11
V _{PSE_PI(max)} (V) ¹	18	18	18	18	36	36	36	36	60	60	60	60	-	yes
V _{PSE(min)} (V)	6	6	14.4	14.4	12	12	26	26	24	24	48	48	-	no
V _{PSE_PI (min)} (V) ¹	5.59	5.76	14.4	14.4	11.6	11.8	26.0	26.0	23.1	23.5	48.0	48.0		yes
$R_{PSE}(\Omega)$	4	1	0	0	4	1	0	0	4	1	0	0	-	no
I _{PI(max)} (A)	0.101	0.237	0.149	0.431	0.091	0.189	0.203	0.431	0.232	0.492	0.443	1.25	-	yes
$R_{Loop(max)}(\Omega)^2$	6.50	6.50	6.50	6.50	6.50	6.50	6.50	6.50	6.50	6.50	6.50	6.50	-	no
V _{PD(min)}	4.94	4.23	13.4	11.6	11.05	10.58	24.7	23.2	21.6	20.3	45.1	39.84	-	yes
P _{VPSE} (W)	0.61	1.42	2.14	6.21	1.09	2.27	5.27	11.21	5.56	11.82	21.28	60.24	-	no
P _{PSE} (W) ³	0.57	1.36	2.14	6.21	1.05	2.23	5.27	11.21	5.35	11.58	21.28	60.24	-	no
P _{PD} (W) ⁴	0.50	1.00	2.00	5.00	1.00	2.00	5.00	10.00	5.00	10.00	20.00	50.00		yes
K=(P _{VPSE} -P _{PD})/P _{PSE}	0.18	0.30	0.07	0.19	0.08	0.12	0.05	0.11	0.10	0.15	0.06	0.17		no
worst case K	0.73	0.77	0.25	0.36	0.69	0.71	0.31	0.36	0.64	0.66	0.25	0.34		no
SCCP Class Code (binary)	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100- 1111	no
(decimal)	0	1	2	3	4	5	6	7	8	9	10	11	12-15	no

 $^{^1\}text{V}_{\text{PSE PI}}$ is the voltage measured at the PSE PI for all load conditions.

 $^{{}^2}R_{\text{Loop}}$ is the round trip link segment resistance.

³P_{PSE} is the maximum power the PSE is required to source as measured at the PI.

⁴P_{PD} is the power available at the PD PI.