

MDI Return Loss for 1000BASE-T1 PoDL

Andy Gardner

Presentation Objectives

- Review 1000BASE-T1 MDI return loss requirement and how it constrains PoDL coupling network inductors.
- Present return loss data for commercially available mutually coupled inductors.
- Propose a relaxed MDI return loss requirement for 1000BASE-T1 PoDL.

PoDL Inductance and MDI Return Loss

- The minimum value of inductance for the coupling networks is constrained by the PHY MDI return loss specification.
- The 1000BASE-T1 MDI RL is specified as:

$$\operatorname{ReturnLoss} \geq \left\{ \begin{array}{cc} 18 - 18 \log \underbrace{10}_{10} f & 1 \leq f < 10 \\ 18 - 18 & 10 \leq f < 100 \\ 18 - 16.7 \log \underbrace{f}_{10} 100 \leq f \leq 600 \end{array} \right\} dB$$

• This translates to:

$$L_{PoDL} \geq \frac{\sqrt{\left[\left(\frac{100\Omega^2}{10^{-RL/20}}\right) + 100\Omega^2\right] \times \left[\left(\frac{100\Omega^2}{10^{-RL/20}}\right) - 100\Omega^2\right]}}{400\Omega \times 2 \times \pi \times f_{Low}}$$

where f_{Low} is the low frequency corner of the RL specification.

• For 1000BASE-T1, 18dB RL at $f_{\text{Low}}{=}10MHz$ requires $L_{\text{PoDL}} \geq 3.14 \mu H$

Implementation of the PoDL Coupling Network

- There are many constraints on the PoDL inductors:
 - •OCL
 - •SRF
 - •DCR
 - Saturation current
 - •Matching (poor matching requires more CMC OCL in order to meet the mode conversion requirement)
 - •Footprint
- If possible, a mutually coupled inductor should be used to:
 - •Conserve core material, i.e. OCL is multiplied by 2
 - Improve matching (matching is typically better than ±2% for a coupled inductor vs. ±10% for discrete inductors)
 - •Minimize footprint
- Is it possible to realize the 1000BASE-T1 MDI RL specification with coupled inductors?

Return Loss Referenced to 100 Ω for Coupled Inductors

- Return loss data for a variety of commercially available coupled inductors in the 1µH to 3.3µH OCL range was provided by Coilcraft.
- Two devices (PFD2015 2.7uH and PFD3215 2.2uH) were able to meet the spec, albeit with less than 1dB of margin at 600MHz.
- The PFD2015 1µH coupled inductor was easily able to meet the high frequency RL requirement, however.
- Is it possible to relax the MDI return loss f_{Low} specification for 1000BASE-T1 PoDL applications from 10MHz to 20MHz?

What Happens in the Time Domain if the MDI RL f_{Low} is increased from 10MHz to 20MHz?

- MDI RL f_{Low} impacts the droop voltage of a symbol.
- For example, in a 1.5ns period the droop would increase by ~1% if f_{Low} was increased from 10MHz to 20MHz.
- This represents a reduction in SNR of only ~0.1dB for the PHY!

Other Benefits of Relaxing MDI RL fLow

- Smaller OCL yields higher saturation current and lower DCR for the same footprint.
- For example, going from 2.7uH to 1uH in the PFD2015 device form factor yields a 31% increase in saturation current and a whopping 65% reduction in DCR!

	Inductance ² ±20% (μΗ)	DCR max ³ (Ohms)	SRF typ ⁴ (MHz)	Coupling coefficient typ	Leakage inductance ⁵ typ (µH)	Isat (A) ⁶			Irms (A)	
Part number ¹						10% drop	20% drop	30% drop	both windings ⁷	one winding ⁸
PFD2015-102ME_	1.0	0.165	380	0.97	0.065	0.85	1.10	1.30	0.800	1.13
PFD2015-122ME_	1.2	0.175	310	0.97	0.071	0.80	1.05	1.20	0.750	1.06
PFD2015-182ME_	1.8	0.294	265	0.97	0.110	0.70	0.85	1.00	0.490	0.690
PFD2015-272ME_	2.7	0.477	220	0.97	0.162	0.65	0.82	0.88	0.410	0.580

Proposal

 Incorporate a MDI return loss specification into Clause 104 for 1000BASE-T1 PoDL applications as follows:

A 1000BASE-T1 PoDL system shall meet or exceed Equation (104-TBD) for all frequencies from 2MHz to 600MHz (with a 100 Ω reference impedance) under all operating conditions and at all times when the PHY is transmitting data or control symbols.

$$Return \ Loss \ge \left\{ \begin{aligned} 18 - 18 \log_{10} \frac{20}{f} & 2 \le f < 20 \\ 18 & 20 \le f < 100 \\ 18 - 16.7 \log_{10} \frac{f}{100} & 100 \le f < 600 \end{aligned} \right\} dB \qquad (104 - \text{TBD})$$

Questions?

