Relative Intensity Noise measurements

IEEE802.3bv Gigabit Ethernet over POF Task Force Interim Meeting Sept 2015, Bonita Springs, FL

Volker Goetzfried 16.09.2015

Purpose

 Present the 802.3bv TF members a measurement methodology and results of relative intensity noise for a PMD transmitter

Measurement conditions

- Temperature: -40 to 85 deg
- Sweeping frequency from 10 170 MHz
- The used optical-to-electrical converter (OEC) was a Femto DC...300MHz

Setup

Spectrum Analyzer settings

SA settings at a glance:

- Internal pre-amplifier enabled (noise level ~10 dB improved)
- ADC Dither function off (decreased linearity but also improved noise floor)
- High Swept IF Gain and FFT IF Gain for best noise level
- Low Resolution BW (10kHz) and low Video BW (100kHz)
- Long sweep time (1 second)
- Enabled noise marker

Measurement procedure

To get the noise PSD of a transmitter sample (green chart), the noise spectra of SA and OEC (blue chart) need to be substracted from the acquired measurement data (red chart)

Relative Intensity Noise calculation

$$RIN = 10\log_{10} \frac{P_{N}}{BW \times I_{oe}^{2} \times R} - G \text{ (dB/Hz)}$$

where:

RIN is the relative intensity noise,
1. P_N is the electrical noise power in Watts with modulation off,
2. BW is the low-pass bandwidth of apparatus – high-pass bandwidth of apparatus due to DC blocking capacitor,
3. I_{oe} is the photocurrent of the optical to electrical converter,
4. R is the effective load impedance of the optical to electrical converter (for example, a 50 ohm detector load in parallel with a 50 ohm power meter would give R equal to 25),
5. G is the Gain in dB of any amplifier in the noise measurement path.

- 1. PSD measured w/ SA, calculated in Watts
- 2. Signal bandwidth -> 162,5 MHz -> 170 MHz were taken for ease of use
- 3. Conversion gain of OECs output voltage need to be considered -> instead of $I_{oe}^2 \times R$ U_{oe}^2 / R was taken
- 3. Load impedance of OEC = 50 Ohm
- 4. Internal amplifier of SA (~ +10 dB) was neglected

RIN measurement results

Conclusions

- Considering the application case up to 85°C, the limit for RIN need to be increased to -132,5 dB/Hz
- For a differentiation between several use/application cases with other temperatures, more RIN limits can be taken into account

Thank you

