Considerations for 802.3by Sponsor ballot open issues

Joel Goergen, Vineet Salunke Cisco

Dec 2nd, 2015 ad hoc

25 Gb/s Ethernet

Within the 802.3by draft specification we know there are 2 areas of interest for potential change or simplification.

Purpose of this presentation is to highlight them and propose justification for addressing them.

- Twinax Cable: 802.3by currently advertises two cable type with a 3m reach
- PHY designation: There has been a proposal to change from the current 25GBASE-CR-S and 25GBASE-CR PHY designations to a single hybrid 25GBASE-CR

3m cables

We have two cables defined for 802.3by both with an advertised reach of 3m. There are 3 potential options that have been discussed.

- 1. Do nothing, keep CA-25G-N and CA-25G-S @ 3m
- 2. Use the CA-25G-N methodology to increase loss/reach of CA-25G-S to ~4m/~19dB.
- 3. Remove CA-25G-S cable type and revert to only just the CA-25G-N for 3m cables.
 - 3b) Perhaps make it an informative annex...

Twin-ax cables

Table 110-9—Cable assembly characteristics summary

Description	Reference	CA-25G-L	CA-25G-S	CA-25G-N	Unit
Maximum insertion loss at 12.8906 GHz	110.10.2	22.48	16.48	15.5	dB
Minimum insertion loss at 12.8906 GHz	110.10.2	8			dB
Minimum differential return loss at 12.8906 GHz	110.10.3	6			dB
Differential to common-mode return loss	110.10.4	Equation (92–28)			dB
Differential to common-mode conversion loss	110.10.5	Equation (92–29)			dB
Common-mode to common-mode return loss	110.10.6	Equation (92-30)			dB

Twin-ax cables

Table 110-10-COM parameter values

Parameter	Symbol	CA-25G-N	CA-25G-S	CA-25G-La	Units
Signaling rate	f_b	25.78125			GBd
Maximum start frequency	$f_{ m min}$	0.05			GHz
Maximum frequency step ^b	Δf	0.01			GHz
Device package model Single-ended device capacitance Transmission line length, Test 1 Transmission line length, Test 2 Single-ended package capacitance at package-to-board interface	C_d z_p z_p c_p	$ 2.5 \times 10^{-4} \\ 12 \\ 30 \\ 1.8 \times 10^{-4} $			nF mm mm
Single-ended reference resistance	<i>R</i> ₀	50			Ω
Single-ended termination resistance	R_d	55			Ω
Receiver 3 dB bandwidth	f_r	$0.75 \times f_b$			GHz
Transmitter equalizer, minimum cursor coefficient	c(0)	0.62			
Transmitter equalizer, pre-cursor coefficient Minimum value Maximum value Step size	c(-1)	-0.18 0 0.02			
Transmitter equalizer, post-cursor coefficient Minimum value Maximum value Step size	c(1)	-0.38 0 0.02			
Continuous time filter, DC gain Minimum value Maximum value Step size	g_{DC}	-16 0 1	-12 0 1	-12 0 1	dB dB dB
Continuous time filter, zero frequency	f_z	f _b / 4			GHz

Table 110-10—COM parameter values

				·	ı
P arameter	Symbol	CA-25G-N	CA-25G-S	CA-25G-L ^a	Units
Continuous time filter, pole frequencies	f_{p1} f_{p2}	f _b / 4 f _b			GHz
Transmitter differential peak output voltage Victim Far-end aggressor Near-end aggressor	$A_{ m v}$ $A_{ m fe}$ $A_{ m ne}$	0.4 0.6 0.6			V V V
Number of signal levels	L	2			
Level separation mismatch ratio	R_{LM}	1			
Transmitter signal-to-noise ratio	SNR_{TX}	28.4	27	27	dB
Number of samples per unit interval	M	32			
Decision feedback equalizer (DFE) length	N_b	14			
Normalized DFE coefficient magnitude limit, for $n = 1$ to N_b	b _{max} (n)	0.35	0.5	1	_
Random jitter, RMS	σ_{RJ}	0.01			UI
Dual-Dirac jitter, peak	A_{DD}	0.05			UI
One-sided noise spectral density	η ₀	5.2 × 10 ⁻⁸			V ² /GHz
Target detector error ratio	DER ₀	10 ⁻¹²	10 ⁻⁸	10 ⁻⁵	_
Channel Operating Margin (min.)	СОМ	3 ^c	3	3	dB

^aThe parameters for CA-25G-L are the same as those for 100GBASE-CR4 (Table 93-8), except for A_{fe} -bFor cable lengths greater than 4 m, a frequency step (Δf) no larger than 5 MHz is recommended.

^cFor CA-25G-N cable assemblies with insertion loss at 12.89 GHz greater than 12 dB, the minimum COM is relaxed to 2.2 dB.

3m cable considerations

Option 1) "Keep as-is"

- Two cables with same advertised reach can be justified if there is a tangible cost difference between CA-25G-N and CA-25G-S
 - low latency (higher cost) cable
 - Higher loss (lower cost) cable
- Preliminary questions indicating that CA-25G-N could be 20-35% higher cost vs. CA-25G-S

3m cable considerations

Option 2) "Increase reach/loss of CA-25G-S"

- Not addressing any 802.3by objective
- Lowest level of support in Oct meeting straw poll
 Straw Poll #1.

Choose one of the following to implement in D2.2:

A. Leave CA-25G-S specification as is.

B. "Increase" CA-25G-S specifications (e.g., dudek_100715_25ge_adhoc)

C. Eliminate CA-25G-S cable type.

Pick one. A: 10 B: 6 C: 14

3m cable considerations

Option 3) "Remove (or become informative) CA-25G-S"

- Cost difference of CA-25G-N and CA-25G-S means removal of CA-25G-S would burden all users with higher cost solutions
- Without CA-25G-S, opens questions on need for BASE-R FEC
- Unclear how an informative annex would really be handled by industry users

3m cable recommendations

- CA-25G-N cables addresses a specific latency sensitive application consistent with early adopters
- As 25GE adoption broadens, latency sensitive applications may not be the dominant market need, and industry may regret being limited to only a higher cost cable

Recommend keeping 802.3by D3.0 cable definition as-is going forward.

PHY designation

There seems to be interest in changing the PHY designation definitions. Two options:

- 1. Leave everything as-is with both 25GBASE-CR-S PHY (defining No-FEC and BASE-R FEC operation for operation over 3m) and 25GBASE-CR PHY (defining No-FEC and BASE_R FEC operation for operation over 3m and RS-FEC operation for operation over 5m)
- Converge into one PHY (to be named 25GBASE-CR) which includes definition of all the FEC modes but makes the No-FEC and RS-FEC optional. This was Y. Hidaka's proposal (detailed here: http://www.ieee802.org/3/by/public/adhoc/architecture/ hidaka 100715 25GE adhoc.pdf)

Background

Current PHY designation approach was thoroughly debated leading up to March 2015 meeting. Concluding motion was:

Motion #5: 2 PHY types

Move to:

- adopt the PHY type approach outlined on page 5 of dudek_3by_01b_0315.pdf. This defines both 25GBASE-CR and 25GBASE-CR-S PHY types.
- create an informal communication to the SFF committee to inform them of our decision
- Y/N/A: 35/2/7

Discussion

- A single 25GBASE-CR PHY designation has some simplicity to it
- Key concern for this approach is the requirement for the user to understand what is implemented within the silicon to ensure interoperability
 - E.g. 5m cable operation, both ends designated
 25GBASE-CR but only one end has implemented
 RS-FEC.

PHY designations recommendations

Recommend keeping 802.3by D3.0 PHY designations as-is going forward.