

Single 25GBASE-CR PMD with optional RS-FEC

Yasuo Hidaka Fujitsu Laboratories of America, Inc.

October 7, 2015

Introduction

- 2 PMDs and 3 FEC modes are very confusing
- 2 PMDs are not necessary, because their difference is merely availability of RS-FEC, and analog frontend is most likely same
- FEC resolution is unnecessarily complicated by use of 2 PMDs
 - This is because arbitration process to choose FEC mode is split between 1.Priority-based resolution to find HCD (Highest Common Denominator) of PMD 2.Logic-based resolution to resolve various demands of FEC usages
 - A unified logic-based resolution for single PMD is equivalent and simpler
- Single PMD with optional RS-FEC should be sufficient and significantly reduces confusion

Draft D2.1, P55: FEC capability and resolution

73.6.5 FEC capability

FEC (F2:F3:F0:F1) is encoded in bits D446:D47 of the base link codeword. The <u>four</u> two FEC bits are used as follows:

- a) F0 is 10 Gb/s per lane FEC ability
- b) F1 is 10 Gb/s per lane FEC requested
- c) F2 is 25G RS-FEC requested
- d) F3 is 25G BASE-R FEC requested

Bits F2 and F3 are used for resolving FEC operation for 25G PHYs while bits F0 and F1 are used for 10 Gb/s per lane operation. Bits F0 and F1 are not used for 25G PHYs.

Insert new subclause "73.6.5.1 FEC resolution for 25G PHYs" before second paragraph of 73.6.5 as follows:

73.6.5.1 FEC resolution for 25G PHYs

For 25G PHYs if neither PHY requests FEC operation in bits F2 or F3 then FEC is not enabled.

For 25GBASE-KR and 25GBASE-CR PHYs if either PHY requests RS-FEC then RS-FEC operation is enabled, otherwise if either PHY requests BASE-R FEC then BASE-R operation is enabled.

For 25GBASE-KR-S and 25GBASE-CR-S PHYs if either PHY requests RS-FEC or BASE-R FEC then BASE-R operation is enabled. This is because 25GBASE-KR-S and 25GBASE-CR-S PHYs do not support RS-FEC operation.

Draft D2.1, P54 & P57: Tech Ability and Priority

Table 73-4—Technology Ability Field encoding

Bit	Technology		
A0	1000BASE-KX		
A1	10GBASE-KX4		
A2	10GBASE-KR		
A3	40GBASE-KR4		
A4	40GBASE-CR4		
A5	100GBASE-CR10		
A6	100GBASE-KP4		
A7	100GBASE-KR4		
A8	100GBASE-CR4		
<u>A9</u>	25GBASE-KR-S or 25GBASE-CR-S		
<u>A10</u>	25GBASE-KR or 25GBASE-CR		
A9 through A24 A11 through A22	Reserved for future technology		

A10:RS-FEC ability →

Table 73-5—Priority Resolution

Higher	priority	→
--------	----------	----------

Higher priority →		25GBASE-KR or 25GBASE-CR	25 Gb/s 1 lane	
8		25GBASE-KR-S or 25GBASE-CR-S	25 Gb/s 1 lane, short reach	
	7 9	10GBASE-KR	10 Gb/s 1 lane	
	<u>810</u>	10GBASE-KX4	10 Gb/s 4 lane	
Lower priority →	9 <u>11</u>	1000BASE-KX	1 Gb/s 1 lane, lowest priority	

dudek_3by_03a_0315.pdf(slide 4) vs D2.1

Table 73-5—Priority Resolution

\triangleleft	7	25GBASE-KR or 25GBASE-CR	25 Gb/s 1 lane	
	<u>8</u>	25GBASE-KR-S or 25GBASE-CR-S	25 Gb/s 1 lane, short reach	

<u>A9</u>	25GBASE-KR-S or 25GBASE-CR-S
<u>A10</u>	25GBASE-KR or 25GBASE-CR

- a) F0 is 10 Gb/s per lane FEC ability
- b) F1 is 10 Gb/s per lane FEC requested
- c) F2 is 25G RS-FEC requested
- d) F3 is 25G BASE-R FEC requested

A10 (Remote)
AND
A10 (Local)

HCD resolved between Two PMDs with CR being higher priority than CR-S

F2 (Remote) F3 (Remote) OR OR

F2 (Local) F3 (Local)

	HCD		OR of RS-FEC	OR of 25G	Usage
	CR	CR-S	REQ	BASE-R REQ	
0		Υ	0	0	noFEC
0		Υ	X	1	BASE-R
0		Υ	1	X	BASE-R
1	Υ		0	0	noFEC
1	Υ		0	1	BASE-R
1	Υ		1	X	RSFEC

HCD is Highest Common Demoninator with CR being higher priority than CR-S OR is the OR function of the appropriate FEC Request from the two ends. X is don't care.

Unified Logic-Based Resolution w/ Single PMD

- Define single PMD with optional RS-FEC
 - F2 = 25G RS-FEC ability
 - F3 = 25G RS-FEC requested
 - F4 = 25G BASE-R FEC requested

X is don't care.

F2 (Remote) AND F2 (Local)	Single PMD (No need to resolve)		F3 (Remote) OR F3 (Local)	F4 (Remote) OR F4 (Local)	
	CR HCI	CR-S	OR of RS-FEC REQ	OR of 25G BASE-R REQ	Usage
0		Υ	0	0	noFEC
0		Υ	X	1	BASE-R
0		Υ	1	X	BASE-R
1	Y		0	0	noFEC
1	Y		0	1	BASE-R
1	Υ		1	X	RSFEC

5

HCD is Highest Common Demoninator with CR being higher priority than CR-S OR is the OR function of the appropriate FEC Request from the two ends.

IEEE P802.3by 25 Gb/s Ethernet Task Force

A Special Case to Lose Small Flexibility

- In most cases, we do not lose any flexibility
- However, there is a special case to lose small flexibility
 - By requesting RS-FEC and *deliberately not advertising A9* (CR-S ability) but only A10 (CR ability), we may avoid link up with CR-S PMD in BASE-R FEC mode and allow link up only with CR PMD in RS-FEC mode
 - If we do this and link partner is CR-S, link does not come up (there is no HCD)
 - This is non-standard usage of A9, because CR should advertised A9 and A10
 - To make proposal equivalent, we need another F bit for BASE-R FEC ability
 - It makes implementation of BASE-R FEC effectively optional
 - For such purposes, there is a *simple workaround* without this flexibility
 - Just force link down, if the link is coming up in the BASE-R FEC mode
 - We cannot justify this non-standard usage to re-use existing 802.3bj design
 - Anyway, major logic change is required (i.e. 4 lanes \rightarrow 1 lane x 4)
 - In the logic change, we should add BASE-R FEC that is mandatory for 802.3by
 - If BASE-R FEC is omitted, it is out of the standard, and we do not need to support it by Auto Negotiation (it can be still interoperable with 802.3by without AN)
- If we abandon this small freedom, we gain huge simplicity

Summary

- 2 PMD types are not necessary
 - Use of 2 PMD types just increases confusion
- We lose almost nothing with unified logic-based resolution
 - We sacrifice small freedom of non-standard usage of A9 to reject CR-S (BASE-R FEC) and enforce CR (RS-FEC)
 - There is a simple workaround for such usage
 - Just detect it and force link down
 - We cannot justify this usage to re-use existing 802.3bj design
- We gain huge simplicity with single PMD
- Single PMD with optional RS-FEC and mandatory BASE-R FEC should be sufficient

Thank you