25G 802.3 Sep. Interim Your Imagination, Our Innovation

Supporting materials for comment #123

~——

[

|
I 4
S

Jeff Slavick

EEEEEEEEEEEE

25G 802.3 Sep. Interim Your Imagination, Our Innovation

Comment #123

Cl 108 SC 180.5.4.5 P116 L15 # [123 I

Slavick, Jeff Avago Technologies

Comment Type TR Comment Status X

With a Clause 49 LPI state diagram you can exit LPI state without ever going to sleep (path
from SLEEP -> ACTIVE exists).

Ipi_rapid_align is set to true whenever rx_lpi_active is set to true, which occurs when /LI/
are seen. So if the Tx sends some /LI/ but doesn't actually go to sleep Ipi_rapid_align
could be set. The only way to clear Ipi_rapid_align is to successfully achieve alignment
with rapid CWMs.

Addiitionally while in the 2_GOOD state you would reset the Ipi_rapid_align setting baed on
rx_lpi_active being TRUE, if it changes to FALSE (transition from /I/ to /LI during WAKE)
then you'd also end up stuck trying to frame to rapid CWMs

SuggestedRemedy
Add the assignment of Ipi_rapid_align <= nx_lpi_active in the 2_GOOD state of Figure 108-6

Change the definition for Ipi_rapid_align to be:
Boolean variable that is set according to the FEC synchronization state diagram in Figure
108 6.

Add a WAKE_FAIL state to Figure 108-6 which is entered if the hold-off timer defined in
108.5.3.7 expires and sets Ipi_rapid_align <= false and transitions to the LOCK_INIT state
via a UCT transition

Create a definition for the Rx EEE hold_timer in 108.5.4 to be referenced by Figure 108-6
and 108.5.3.7

Proposed Response Response Status O

AvaGo

TECHNOLOGIES

25G 802.3 Sep. Interim

Your Imagination, Our Innovation

D2.0 definitions

Ipi_rapid_align
Boolean vanable that 1s set to true when rx_Ip1_active 1s true, and is set to false according to the
FEC synchronization state diagram in Figure 108-6.

rx_lp1_active
Boolean vanable that 1s set to true when the rate compensation for codeword markers in the

receive direction function (108.5.3.6) infers that the Low Power Idle 1s being received from the
link partner, and 1s set to false otherwise.

This means Ipi_rapid_align is a latched-high version of

rx_Ipi_active that only clears when you enter WAKE_GOOD
state of Figure 108-6

EEEEEEEEEEEE

D2.0 Figure 108-6

reset +isignal_ok + restart_lock
LOCK_INIT

FEC_align_status « false
test_cwm <« false

v

GET_BLOCK

slip_done « false

test_cwm

y
FIND_1ST

test_cwm <« false

lewm_valid b
cwm_valid * cwm_valid *
lipi_rapid_align Ipi_rapid_align
COUNT_NEXT WAKE_COUNT_NEXT
start cwm_counter start rewm_counter
rowm counter done * rcwm_counter_done *
Tc i cwm_valid
co Y . lcwm_valid
Icwm_valid L_
WAKE_GOOD
FEC_align_status < true
start rcwm_counter
Ipi_rapid_align < false
cwm_counter_done *
v ! cwm_valid rcwm_counter_done *
SLIP rx_down_count=1
rcwm_counter_done *
SLIP l rx_down_count>1

2_GOOD

slip_done

FEC_align_status < true

Ipi_rapid_align <= Ipi_rapid| align + rx_Ipi_active

Clause 49

* In the Clause 49 PCS you can
begin sending /LI/ and then go
back to ACTIVE without ever
going to sleep.

 This means 108 could receive
some /LI/ which will set
rx_Ipi_active high, latch the
Ipi_rapid_align variable TRUE,
then see /Il come through and de-
assert rx_Ipi_active, but
Ipi_rapid_align stays TRUE and
the link doesn’t go to sleep.

reset

v

v

TX_ACTIVE

tx_mode <= DATA
scrambler_bypass < FALSE

T_TYPE(tx_raw) = LI l

v

-

T_TYPE(tx_raw) =LI

TX_SLEER

Start tx_ts_timer
scrambler_bypass T FALSE

T_TYPE(tx_raw)=LI"
tx_ts_timer_done

y

TX_QUIET

tx_mode <= QUIET
Start tx_tq_timer

tx_tq timer_done +
T_TYPE(tx_raw) = LI

y

TX_ALERT

tx_mode <= ALERT
Start one_us_timer

one_us_timer_done l

TX_WAKE

tx_mode <= DATA
Start tx_tw_timer

T_TYPE(tx_raw) = LI
tx_tw_timer_done

Iscr_bypass, nable

Iscr_bypass,
tx_tw_timer_done *
,_enable

| >
T_TYPE(tx_raw) = LI
T_TYPE(tx_raw)=LI"
tx_tw_timer_done *
_enable
>

scr_bypass

TX_SCR_BYPASS

scrambler_bypass « TRUE
Start one_us_timer

T_TYPE(tx_raw) = LI *
one_us_timer_done

Figure 49-12—LPI Transmit state diagram

Clause 49

* Also during the WAKE process
you could start with /LI/ being
sent in the TX_WAKE state and
then change it to /l/ in the
TX_WAKE or TX_SLEEP state
and return to TX_ACTIVE.

* This also causes Ipi_rapid_align
to be latched TRUE when the Tx
transitions from /LI/ to /I after the
Rx has reached 2_GOOD state

reset

v v

TX_ACTIVE

tx_mode <= DATA

scrambler_bypass < FALSE

T_TYPE(tx_raw) = LI |

-

T_TYPE(tx_raw)=L1" &

T_TYPE(tx_raw) = LI

T_TYPE(tx_raw) =LI

TX_YLEEP
Start tx_ts_ti
scrambler_b s <= FALSE

>

I
tx_ts_timer_done l [

T_TYPE(tx_raw) = LI

TX_QUIET

tx_mode <= QUIET
Start tx_tq_timer

tx_tq timer_done +

y

TX_ALERT

tx_mode <= ALERT
Start one_us_timer

one_us_timer_done l

TX_WAKE

t_mode <= DATA
Start tx_tw_timer

T_TYPE(tx_raw)=LI"
tx_tw_timer_done *

|
T_TYPE(tx_raw) =LI * 1
_tw_timer_done *
Iscr_bypass_enable | |E
< -
tx_tw_timer_done
scr_bypass_ef

TX_SCR_BYPASS

Start one_us_timer

scrambler_bypass « TRUE

o

T_TYPE(tx_raw) = LI *
one_us_timer_done

one_us_timer_done

Figure 49-12—LPI Transmit state diagram

25G 802.3 Sep. Interim Your Imagination, Our Innovation

Issue

* |pi_rapid_align controls how often CWMs are checked for
 TRUE = every RS-FEC codeword, FALSE = every 1024

 Once Ipi_rapid_align == TRUE the only way to ever set it
FALSE is to lock onto RCWM.

* If frame_lock is lost with Ipi_rapid_align == TRUE and
RCWMs aren’t sent, then there’s no method to clear
Ipi_rapid_align and try to lock at the normal CWM interval

* |le. Lock could be lost due to
* Failure to lock to RCWMs before they disappear
» Excessive uncorrectable codwords

« Remote tx turns off then on for a non-SLEEP reason (reset, cable pull)
AvaGo

EEEEEEEEEEEE

25G 802.3 Sep. Interim

Flow Taken (ipi_rapid_align=FALSE)

* Blue is taken until
you locate the 1

CWM, then RED is
taken to confirm

I O C k —— I mn_vai; .

— l

reset +Isignal_ok + restart_lock

'

LOCK_INIT

FEC_align_status « false
test_cwm <« false

UCT

GET_BLOCK

slip_done <« false

test_cwm

v
FIND_1ST

_cwm <« false

_ \ cwm_valid *
lipi_rapid_align v Ipi_rapid_align
COUNT_NEXT WAKE_COUNT_NEXT
start cwm_counter start rcwm_counter
Wait 1024 CWs

rcwm_counter_done *

cwm_counter_done *
fcwm_valid

SLIP

SLIP

lcwm_valid

rx_down_count=1

rcwm_counter_done *
cwm_valid

e

WAKE_GOOD

FEC_align_status < true
start rcwm_counter
Ipi_rapid_align « false

cwm_counter_done *
cwm_valid rcwm_counter_done *
l rx_down_count>1

slip_done

FEC_align_status « true

Ipi_rapid_align <= Ipi_rapid_align + rx_Ipi_active

rcwm_counter_done *

25G 802.3 Sep. Interim reset +!signal_olk + restart_lock

LOCK_INIT

Flow Taken (ipi_rapid_align=TRUE) | =
.

GET_BLOCK

* Blue is taken until you o done o fase
locate the 1st RCWM, rorgemn
then RED is taken to ,

FIND_1ST

confirm lock o

) I I I I —— I cwm vaic; * [cwm_valid *
Ipi_rapid_disable is s, ‘I} o s
cleared only after COUNT_NEXT WARE COUNT.NEXT
confirming lock em—s—— a1 oW

* Note that e s o el

Ipi_rapid_disable AKE 500
could be set i
immediately back to v . mm"‘e'ﬁ ——

TRUE if /LIl is being e v
received FEC o = e

slip_done Ipi_rapid_align <= Ipi_rapid| align + rx_lpi_active

rcwm_counter_done *
rx_down_count>1

25G 802.3 Sep. Interim

Flow Taken (broken)

* |pi_rapid_align == TRUE,
TX is in TX_ACTIVE state,
Rx loses lock

* Blue is taken until you
locate the 1st CWM/RCWM,

then RED is taken to
confirm lock

* Txis sending CWM at
1024 interval instead of
every CW, SM is stuck in
infinite loop.

 Tx and Rx aren’t in the
same EEE state and
there’s no timeout in Rx to
revert to non-EEE mode

reset +isignal_ok + restart_lock

y

LOCK_INIT

FEC_align_status « false
test_cwm <« false

UCT

LA

GET_BLOCK

slip_done « false

test_cwm

A 4
FIND_1ST

rst_cwm:false
L)

lewm_valid
COUNT_NEXT
start cwm_counter
I rcwm_counter_done
lowm_valid
cwm_counter_done * e
Tcwm_vali

Your Imagination, Our Innovation

cwm_valid *

cwm_valid *)
i lipi_rapid_align v Ipi_rapid_align

WAKE_COUNT_NEXT

start rcwm_counter

Wait 1 CW

10

rcwm_counter_done *
cwm_valid

A v

rcwm_counter_done *
rx_down_count=1

WAKE_GOOD
FEC_align_status < true

y
2_GOOD

FEC_align_status < true

Ipi_rapid_align <= Ipi_rapd_align + rx_Ipi_active

Remedy to Figure 108-6 = ™

test_cwm <= false

lUCT
v \
GET_BLOCK

slip_done <= false

« Add WAKE_FAIL state o
to reset Ipi_rapid_align FIND_1ST
if the hold_off_timer s e
expires. oo] } o e

* Resets RX EEE mOde If TX “nﬁ:::?:IT NEXT I WAKE_COUNT_NEXT
and Rx get out of sync) | I

start_cwm_counter start_(ocwrm_counter

I cwm_valid * |gi_rapid_align

| Ihold_off_timer_done
.

 Update Ipi_rapid_align e ERET L o mr o
based on current state “%ml 7N
" M » - | A I { | ﬁ '&%voxter_m
of rx_Ipi_active while in I | WaKe_GooD
2_GOOD state _se | |t e e

start_fcwmn_counter

. slip I
« Rx tracks changes in /I/ — —
and /LI(_from Tx to reduce %4'0038% 2 e000 | o down o 1 WAKE AL
probability WAKE_FAILis ™" | R
ever VISIted lpi_rapid_align <= rx_lpi_active I

NOTE - Optional states (inside dotied box) l—

and transition A are only needed to support ucT
1 | deep sleep EEE capability.

25G 802.3 Sep. Interim Your Imagination, Our Innovation

Remedy - Definition updates

* Ipi_rapid_align

* Boolean variable set according to the FEC Synchronization state machine in
Figure 108-6. Set to false when reset is TRUE.

108.5.4.3a Timers
The following timer is only used for EEE deep sleep capability.

hold off timer

* This timer starts when rx_mode (or rx_tx_mode if appropriate)
transitions from QUIET to DATA. The timer is stopped when the
terminal count is reached or the FEC Synchronization state
machine enters the 2_GOOQOD state. The timer terminal count is set
to 11.5ys. When the timer reaches terminal count
hold_off_timer_done is set to TRUE.

EEEEEEEEEEEE

12

25G 802.3 Sep. Interim Your Imagination, Our Innovation

Remedy - other edits

 Add a reference to the newly created timer sub-section into
108.5.3.7 item a)

 108.5.3.7 is the RX Rapid codeword lock for EEE deep sleep description
section. ltem a) states to start a hold off timer.

EEEEEEEEEEEE

13

