Upper Frequency for Link Segments

Martin Rossbach, Nexans

IEEE P802.3bq 25G/40GBASE-T Task Force / IEEE P802.3bz 2.5G/5GBASE-T Task Force

Atlanta, USA January 2016

Supporters

Valerie Maquire (Siemon)

German Feyh (Broadcom)

Dieter Schicketanz (Consulter)

Victor Renteria (Stewart Connector)

Yvan Engels (Leoni)

Dave Hess (Cord Data)

Yakov Belopolsky (Stewart Connector)

Concept of MultiG: Re-Use of 10G Chips at different Clock Rates

- 10G Technology now used for all 4 applications defined by 802.3bq & 802.3bz
- Upper Frequency Requirements should be similar

How much headroom above Nyquist Frequency is required?

- Current Drafts of 802.3bq and 802.3bz are not consistant: a range of 0 % up to 25% can be found
 - Link Segment 802.3bq requires 25% headroom (2 GHz for 1.6GHz)
 - Liason letter about 2.5/5G to ISO requested 0% headroom
 - Scaling Factors used are not applied in same way :
 - bz used Scaling for PMA only
 - bq uses Scaling for PMA and Link Segment

Overview

	2,5G	5G	25G	40G
Scaling Factor 126.1 .1 / 113.1.1	0,5	1	0,625	1
Modulation rate in Megasysmbols/s (126.1.3/113.1.3)	200	400	2000	3200
PMA in Megasysmbols/s (126.1.3.2/113.1.3.2)	400 xS over 4xTP 100m	400 xS over 4xTP 100m	3200*S over 4xTP 30m	3200*S over 4xTP 30m
Link Segment in MHz (126.7.1)	100 MHz	250 MHz	2000*S	2000*S
Link Segment Upper Freq (126.7.2)	100 MHz (IL, RL, ACRF)	250 MHz	2000*S	2000*S
Scaling used in Salz SNR (126.7.3)	IL +PSD = 200MHz x S Noise = 200 x S	IL +PSD = 200MHz x S Noise = 200 x S		

Is there a difference of assessing installed base and recommending new cabling?

- If yes, this needs clarification/confirmation as 2 TR of assessing installed cabling are under way in ISO which need guidance
 - ISO 11801-9904 : 100MHz or 125MHz for 2.5G over Cat5e
 - ISO11801-9905 : 1000MHz or 1250MHz for 25G over Cat ?

Double Headroom?

- A hard requirement needs frequency expansion, a soft requirement or "Nice to have" maybe does not
- Take into account that cabling designers also appreciate headroom and apply some "room"
 - If standards spec a cable of 2 GHz, you likely will see 2.2 G
 cable or better in the field
- —There is a risk of double counting

Conclusion

- 25% headroom rule required now 400 MHz: In the past, this was used for 5 cabling classes
 - Class A to E: 100kHz/1MHz/16MHz /100MHz /250MHz
- Recommendation:
 - Specify what is really required
 - Use consistant approach in 802.3bq and 802.3bz
 - Keep 100MHz for 2.5G, 1 GHz for 25GBase-T as installed base is available
 - Keep 2 GHz Spec for 40G (including some headroom for maybe another app to come)