Link Segment Specifications

George Zimmerman
CME Consulting

Link Segment Specification Proposal

- Utilize same form as Clause 55.7 and 113.7
- Base internal link segment characteristics off Cat5e channel specifications in TIA 568C.2, up to specified frequency
 - Leave frequencies above 100MHz TBD for now
- Define Length Scaling for Insertion Loss
 - Informative for now, useful for possible use-case definitions to come
- Define Alien Crosstalk PSANEXT & PSAACR-F in same form as Clause 55, but with offset constants
 - Constants are TBD for now, form is from Eqns 55-23, 55-32
 - Consider qualifying Alien Crosstalk similarly to ACMC (55.7.3.3)
- Solicit contributions / input from cabling standards bodies on:
 - Frequency extension of link segment parameters to 250MHz
 - Alien Crosstalk constants
 - Alien Crosstalk qualification

Overview Clause, from 40.7.1, updated

- X.7.1 Cabling system characteristics
 - 2.5G/5GBASE-T requires 4-pair Class D cabling with a nominal impedance of 100 Ω, as specified in ISO/IEC 11801:2002. Operation on other classes of cabling may be supported if the link segment meets the requirements of X.7.
 - Additionally:
 - a) 2.5GBASE-T is an ISO/IEC 11801-2002 Class D application, with additional installation requirements and transmission parameters specified in this clause.
 - b) 5GBASE-T is an ISO/IEC 11801-2002 Class D application, with the additional installation requirements and transmission parameters specified in this clause, including extended frequency performance beyond that specified for Class D channels.
 - c) The use of shielding is outside the scope of this specification.

Fill in link segment skeleton with TIA 568 C.2 Cat 5e parameters

- Don't need pair-to-pair specifications constrained by PS
- TBD for 100MHz < f ≤ 250MHz

Additional important parameters

- X.7.2.5 Propagation Delay (ns):
 - Frequency extend to 250MHz

$$1 \le f \le 250 \qquad (534 + \frac{36}{\sqrt{f}}) + (4 \cdot 2.5)$$

- Question for study: Do we need TCL, ELTCL (balance parameters)
 - Not specified for Cat 5e, provided only for expected performance on Cat 6 in TIA 568 C.2
 - Cat 6 values:

• TCL
$$1 \le f \le 250$$
 $50 - 15\log(f)$
• ELTCL $1 \le f \le 30$ $30 - 20\log(f)$ n/s

Length Scaling of IL & Internal parameters

Length is L meters, number of connectors is n

$$- \text{IL} \le \left(\frac{L}{100} + 0.02\right) \times \left(1.967\sqrt{f} + 0.023f + \frac{0.05}{\sqrt{f}}\right) + n * 0.04\sqrt{f}$$

- Leave NEXT, RL, ELFEXT all length independent
 - Note, when modelling effect of ELFEXT, or PSACR-F, length dependence comes into play as log₁₀(L/100), but specification doesn't need this, as worst-case is 100M
 - Alien crosstalk specifications may vary with length

PSANEXT – Proposed form

- There is no specification for alien NEXT on Cat 5e or 6. Propose we assume the models shapes used for Cat6a with an offset, which is the tolerated PSANEXT – hence function of IL:
 - PSANEXT loss_{2.5G} ≥ $X1_{2.5G}$ (*IL*) $10log_{10}$ (f/100), $f \le 100$ MHz

Where X1 $_{2.5G}$ (IL) is a function of insertion loss for 2.5G

PSAELFEXT (PSAACR-F) - Proposed form

- Same approach as PSANEXT, since it is unspecified, except that PSAACR-F already varies as a function of coupling length and is adjusted for IL, so the offsets are constants
 - PSAACR- $F_{2.5G}$ ≥ $X2_{2.5G}$ $20log_{10}(f/100)$, f < 100 MHz
 - Where X2_{2.5G} is a constant TBD
 - PSAACR- F_{5G} ≥ $X2_{5G}$ $20log_{10}(f/100)$, f < 250 MHz
 - Where X2_{5G} is a constant TBD

Alien Crosstalk Qualification - thoughts

- Interplay of ANEXT & AFEXT is substantial at proposed frequencies for 2.5G/5GBASE-T.
- Recommend development of a lumped measurement based on Salz SNR – similar to Alien Crosstalk Margin Computation in 10GBASE-T
 - Relates IL to Alien Crosstalk
 - Allows tradeoffs of ANEXT & FEXT
 - Can be made environment-specific (different interferers & use-cases)
 - However, no cabling specification to compute 'margin' to! (perhaps a simpler calculation)

THANK YOU