

CHANNEL LINK MODEL

OVERVIEW + EXAMPLES

CONTACT: MAREK HAJDUCZENIA NETWORK ARCHITECT, PRINCIPAL ENGINEER EMAIL: MAREK.HAJDUCZENIA@MYBRIGHTHOUSE.COM

Summary

- P802.3av (10G-EPON) developed an Excel-based link channel model, providing a set of agreed assumptions about channel loss, impairments, etc.
- NG-EPON link channel model should be used going forward for any PMD-related proposals, specifically for:
 - Wavelength allocation plans
 - Tx and Rx parameter proposals
 - Power budget discussions
- This deck provides overview of the existing tool and provides examples of 10G-EPON link definitions

EPON link model parameters

Channel loss [A]

- Channel loss accounts for: fiber loss, splitter (PSC) loss, SRS loss, and any excess loss (connectors, splices, etc. + margin)
- Fiber loss:
 - Based on fiber attenuation curve (λ^{-4} ,G652AB,G652CD) [B18]
 - Includes best and worst [B19] allowed attenuation parameters, calculated for central operating wavelength [B13] and specific link length [B23]
 - **Suggestion**: use λ^{-4} curve with maximum attenuation and 0.35 dB/km loss [B20] for worst-case scenario analysis
- PSC loss:
 - Based on data collected in P802.3av (see <u>3av 0611 hajduczenia 1.pdf</u>)
 - Includes best, average, and worst [B26] loss for specific PSC split count [B25]
 - Suggestion: use maximum loss curve for worst-case scenario analysis
- Excess loss

3

- Calculated as difference between maximum channel insertion loss, fiber loss, PSC loss, and SRS loss [B28] (due to non-linear effects in fiber) [B29]
- SRS calculations based on <u>3av 0611 ten 1.pdf</u> and <u>3av 0611 pato ten 1.pdf</u>
- Excess loss MUST BE greater than zero for channel to be viable

Channel loss [B]

Fiber loss parameters

Link length

Fibre_Attenuation_Curve	lambda^-4	-
Fibre_Attenuation_Curve_Type	max	-
Fibre Attenuation Base Value	0.35	dB/km
Fibre_Attenuation_Base_Wavelangth	1010.00	nm
Fibre_Attenuation_Value	0.34	dB/km
Channel_Length_Max	20	, km
Fibre_Loss	6.77	dB
PSC_Split_count	32.00	-
PSC_Loss_Curve	max	-
PSC_Loss	18.40	dB
SRS_Loss	1.00	dB
Excess_Loss	2.83	dB
ITU_Optical_Path_Penalty	1.00	dВ
Channel_Loss_Min	8.00	dB
Channel_Loss_Max	29.00	dB
Power Budget	30.50	dB
Dispersion_Uo_Min	1300.00	nm
Dispersion_Uo_Max	1300.00	nm
Dispersion_So	0.09	ps/nm^2 ·k
Dispersion_D_Max	5.22	ps/(nm·km
Dispersion_D_Min	3.56	ps/(nm·km
Dispersion_Penalty	0.24	dB
TDP	1.50	dB
Dispersion_Uo_Min Dispersion_Uo_Max Dispersion_So Dispersion_D_Max Dispersion_D_Min Dispersion_Penalty TDP	1300.00 1300.00 0.09 5.22 3.56 0.24 1.50	nm nm ps/nm^2 ps/ (nm · ps/ (nm · dB dB

PSC loss parameters

	Link parameters
-	Defines the type of the fibre attenuation curve which will be used for calculation of the fibre
	accontaction for the griding wavelength, o types of carters are available i.e. handla -
-	Services are available only for G6220B and G622CD type of fibre
B/km /	Base wavelength for fibre attenuation estimation - only applicable to the lambda^-4 model
nm	Base wavelength for fibre attenuation estimation
	Calculated nominal attenuation of fibre in dB/km of ideal channel (no connectors, splices etc. i.e.
B/km	the medium is considered to be continous)
km	The length of the fibre channel between the OLT and the most distant ONU
dB	Calculated total attenuation of an ideal fibre channel (no connectors, splices etc. i.e. the medium
-	The maximum number of ports on the Passive Splitter Combiner (powers of 2 are acceptable)
	Defines the type of the PSC loss curve (best case [min], average [avg] and worst case [max]) for
-	the FBT type PSC devices, based on the collected device loss data and approximated curves.
-17	The total loss of the PSC device with the particular number of ports (PSC_Split_count) for the
ab	given loss curve (PSC_Loss_Curve), accounting for the ideal and excess loss
dB	SRS induced nonlinear penalty (as resulting from the nonlinear interaction with any other
uв	transmission system e.g. 1550nm Analog video overlay operated on the PON fiber).
dB	The additional loss resulting from the non-ideal fibre channel elements i.e. connectors, splices
HB	The penalty attributable to the optical path. Given a fixed set of transmitter and receiver, the
~	optical path penalty is equal to the link margin measured with pure attenuation less the link
dB	Minimum channel insertion loss (user defined) to prevent the overload of the receiver on the
dB 🔪	Maximum channel insertion loss (user defined), limited by the Tx power and Rx sensitivity
dB	Available power budget
nm	Minimum value of the zero dispersion wavelength
nm	Maximum value of the zero dispersion wavelength
ım^2 ∙km	Value 👌 the dispersion curvature parameter
nm · km)	Maximum dalculated dispersion "D" parameter
nm · km)	Minimum calculated dispersion "D" parameter
dB	Dispersion penalty, calculated for the worst case transmission wavelength in the allocated window
	(Tx Wavelength Nin, Tx Wavelength Max), based on the dispersion penalty estimation model presented
dB	Transmitter and Dispersion renaity (maximum) is equal to the link margin, measured with an local ix
	AND THE APPENDATION LEAST THE THIN MALVIN MEASULED WILL & WOLST, GASE IN AND WOLST, GASE OUT GAL

Insertion loss (min/max) Current link budget SRS loss (calculated externally)

Example of EPON power budget

PX30-D

Transmitter parameters			
ITU_ERnom	6.00		
ITU Tx Ave Min	3.00		
ITU_Tx_Ave_Max	7.00		
IEEE_Tx_OMA_Min	3.78		
IEEE_IX_OMA_Min	2.39		
IEEE Tx OMA Max	7.78		
IEEE Tx_OMA_Max	6.00		
Tx_Wavelength_Min	1480.00		
Tx_Wavelength_Max	1500.00		
Tx_Wavelength_Uc	1490.00		
Tx_Chirp_Parameter_Max	-2.00		
Tx Data Rate	1250.00		
Link parameters			

Fibre_Attenuation_Curve	lambda^-4
Fibre_Attenuation_Curve_Type	min
Fibre_Attenuation_Base_Value	0.35
Fibre_Attenuation_Base_Wavelength	1550.00
Fibre_Attenuation_Value	0.36
Channel_Length_Max	20
Fibre_Loss	7.21
PSC_Split_count	32.00
PSC_Loss_Curve	max
PSC_Loss	18.40
SRS_Loss	1.00
Excess_Loss	2.39
ITU_Optical_Path_Penalty	1.00
Channel Loss Min	15.00
Channel Loss Max	29.00
Power Budget	30.00
Dispersion_Uo_Min	1300.00
Dispersion_Uo_Max	1300.00
Dispersion_So	0.09
Dispersion_D_Max	15.20
Dispersion_D_Min	13.93
Dispersion_Penalty	0.04
TDP	1.00

Receiver parameters	
ITU_Rx_Sensitivity_Ave	-27.00
ITU_Rx_Sensitivity_Ave_OMA	-26.22
ITU_Rx_Sensitivity_Ave_OMA	2.39
IEEE_Rx_Stressed_Sensitivity_Ave	-26.00
IEEE_Rx_Stressed_Sensitivity_OMA	-25.22
IEEE_Rx_Stressed_Sensitivity_OMA	3.01
IEEE_Rx_Sen_Ave	-27.00
IEEE_Rx_Sen_Ave	2.00
IEEE Rx Sen_OMA	-26.22
IEEE_Rx_Sen_OMA	2.39
Rx Overload	-8.00

PX30-U

Transmitter parameters			
ITU_ERnom	6.00		
ITU_Tx_Ave_Min	0.62		
ITU_Tx_Ave_Max	5.62		
IEEE_Tx_OMA_Min	1.40		
IEEE_Tx_OMA_Min	1.38		
IEEE Tx OMA Max	6.40		
IEEE Tx OMA Max	4.37		
Tx_Wavelength_Min	1260.00		
Tx_Wavelength_Max	1360.00		
Tx_Wavelength_Uc	1310.00		
Tx Chirp Parameter Max	-2.00		
Tx Data Rate	1250.00		

Link parameters			
Fibre_Attenuation_Curve	lambda^-4		
Fibre_Attenuation_Curve_Type	min		
Fibre_Attenuation_Base_Value	0.35		
Fibre_Attenuation_Base_Wavelength	1310.00		
Fibre_Attenuation_Value	0.35		
Channel_Length_Max	20		
Fibre_Loss	7.00		
PSC_Split_count	32.00		
PSC_Loss_Curve	max		
PSC_Loss	18.40		
SR5_Loss	1.00		
Excess_Loss	2.60		
ITU_Optical_Path_Penalty	1.00		
Channel Loss Min	15.00		
Channel Loss Max	29.00		
Power Budget	30.40		
Dispersion Uo Min	1300.00		
Dispersion Uo Max	1324.00		
Dispersion So	0.09		
Dispersion D Max	5.22		
Dispersion D Min	-6.42		
Dispersion Penalty	-0.01		
TDP	1.40		
Receiver parameter:	5		
ITU_Rx_Sensitivity_Ave	-29.38		
ITU_Rx_Sensitivity_Ave_OMA	-28.60		
ITU_Rx_Sensitivity_Ave_OMA	1.38		
IEEE_Rx_Stressed_Sensitivity_Ave	-28.38		
IEEE_Rx_Stressed_Sensitivity_OMA	-27.60		
IEEE_Rx_Stressed_Sensitivity_OMA	1.74		
IEEE_Rx_Sen_Ave	-29.78		
IEEE_Rx_Sen_Ave 1.05			
IEEE Rx Sen OMA -29.00			
IEEE_Rx_Sen_OMA	1.26		
Br. Orrentland	0.20		

- Example on right shows PX30-D and PX30-U links, as defined in IEEE Std 802.3bk-2013
- NG-EPON link budget proposals can be submitted as D (downstream) or U (upstream) link
 - D = OLT Tx + ONU Rx
 - U = ONU Tx + OLT Rx
 - Take note of operating wavelength change for D and U links

Tx parameters

- Transmitter is described using data rate [B15], wavelength range [B11-12], min/max average launch power [B5-6] and extinction ratio [B4] (defaulted to 9dB)
 - Data rate is expressed in MBd (currently set to 25GBd)
 - Wavelength range defines min and max values central wavelength is calculated as the center or target range
 - Average launch power is expressed in dBm using ITU definition
 - IEEE Tx launch values are calculated in reference to OMA (Optical Modulation Amplitude) [B7-10] – these are values that end up in draft
 - Chirp parameter to be added if needed (worst case)

ITU ERnom		9.00	dB	Mominal Extinction Ratio used to convert average power values to OMA values - for a test procedure,
-	\		r /	see 802.3, clause 52.9.5; for relation between OMA, ER and average power, see 802.3, clause 58.7.6
ITU_Tx_Ave_Min	\	6.00	dBm	Average Tx launch power (minimum) equal to the minimum OMA at the maximum ER
ITU_Tx_Ave_Max		8.00	dBm	Average Tx launch power (maximum) equal to the maximum OMA at the nominal ER
IEEE_Tx_OMA_Min		7.91	dZm	Minimum OMA Tx launch power
IEEE_Tx_OMA_Min		6.18	mW	Minimum OMA Tx launch power
IEEE_Tx_OMA_Max		9.91	dBm	Maximum OMA Tx launch power
IEEE_Tx_OMA_Max		9.80	mW	Maximum OMA Tx launch power
Tx_Wavelength_Min		1340.00	nm	Transmitter wavelength (min)
Tx_Wavelength_Max		1360.00	nm	Transmitter wavelength (max)
Tx_Wavelength_Uc		1350.00	nm	Transmitter wavelength (central wavelength), calculated based on Tx_Wavelength_Min and
Tx_Chirp_Parameter_Max		0.00	-	The maximum (worst case) value of Chirp parameter used in the calculation of the dispersion
Tx Data Rate		25000.00	MBd	The effective data rate at the PMD level after encoding, scrambling i.e. fed to the PMA interface

Rx parameters

- Receiver is described using average sensitivity in ITU-style [B43-45], IEEE average (stressed) sensitivity [B46-52], and Rx overload [B53]
 - All parameter are calculated based on Tx parameters and channel model
 - To achieve specific Rx parameters, user can modify channel parameters and/or Tx parameters
 - IEEE average stressed receiver sensitivity (also in OMA), receiver sensitivity (also in OMA) and Rx overload value end up in the draft. Other parameters are only used for reference, to simplify calculation between ITU-T and IEEE specifications

			Receiver parameters
			Average Rx sensitivity in ITU formalism, calculated as the difference between the minimum, average
ITU_Rx_Sensitivity_Ave	-24.00	dBm	Tx launch power (ITU_Tx_Ave_Min) and the total power budget (Channel_Loss_Max +
ITU_Rx_Sensitivity_Ave_OMA	-22.09	dBm	Average Rx sensitivity (ITU_Rx_Sensitivity_Ave) in OMA, for the given nominal ER (ITU_Ernom) @ BER
ITU_Rx_Sensitivity_Ave_OMA	6.18	uW	Average Rx sensitivity (ITU_Rx_Sensitivity_Ave) in OMA, for the given nominal ER (ITU_Ernom) @ BER
IEEE_Rx_Stressed_Sensitivity_Ave	-23.00	dBm	Stressed Rx sensitivity in average power form @ BER 1e-3
IEEE_Rx_Stressed_Sensitivity_OMA	-21.09	dBm	OMA stressed Rx sensitivity in average power form @ BER 1e-3
IEEE_Rx_Stressed_Sensitivity_OMA	7.78	uW	OMA stressed Rx sensitivity in average power form @ BER 1e-3
IEEE Rx Sen Ave	-24.50	dBm	Ideal Rx sensitivity in IEEE formalism in average power taking the TDP into account.
IEEE_Rx_Sen_Ave	3.55	uW	Ideal Rx sensitivity in IEEE formalism in average power taking the TDP into account.
IEEE_Rx_Sen_OMA	-22.59	dBm	Ideal Rx sensitivity in IEEE formalism in OMA taking the TDP into account.
IEEE_Rx_Sen_OMA	5.51	uW	Ideal Rx sensitivity in IEEE formalism in OMA taking the TDP into account.
Rx_Overload	0.00	dBm	The Rx overload value for the given link

THANK YOU!