Channel Control Protocol

Glen Kramer Marek Hajduczenia

derived and extended from: kramer_3ca_1_117.pdf

November 2018

No dependencies between the numbers of upstream and ⇒ downstream channels enabled in each ONU

- Channels can be enabled and disabled independently based on traffic load or specific diagnostic/maintenance needs
- EPON's DC/UC bandwidth asymmetry can be changed dynamically

No fixed pairing between downstream and upstream channels

 A GATE arriving on any downstream channel may carry grants for any upstream channels.

No fixed mapping of LLIDs to channels

 Any LLID provisioned at a given ONU may be served by any of the channels enabled in that ONU

Channel Control Principles

- For backward compatibility, ONUs may need to operate with some of the channels turned off
 - 50/50G-EPON ONU configured to operate as 50/25G-EPON ONU
 - 50/25G-EPON ONU configured to operate as 25/25G-EPON ONU
- Individual channels may be turned off for other reasons, e.g.,:
 - To save power
 - To perform diagnostic/maintenance (i.e., rogue ONU detection)
 - For optical protection
- Turning a channel on/off means turning OLT/ONU receiver and transmitter on/off, accordingly

ONU <u>shall preserve</u> channel state across power cycle

 If a channel in an ONU has been disabled by NMS, that channel should not get enabled automatically after the ONU power cycle (or else user actions will undo operator's configurations)

Channel Control Protocol Requirements

- To manage channels in Nx25G-EPON, the Channel Control Protocol needs to support two operations:
 - 1. Querying ONU's channel state
 - 2. Configuring ONU channels

Each ONU channel can be in one of these states:

- <u>Absent</u> (e.g., 25Gb/s ONU does not have channel nº 2)
- <u>Enabled</u> (channel is operational, i.e., it exists, not failed, and not disabled)
- <u>Remotely disabled</u> (i.e., disabled by the NMS)
- Locally disabled (i.e., disabled by ONU if PMD failure is imminent)
- Failed (i.e., PMD has failed)

To configure a channel, NMS issues one of these commands:

- Enable Channel
- Disable Channel

Protocol Messages

Channel Control Protocol needs 4 messages:

- **QUERY** NMS queries ONU for the state of each channel.
- **QUERY_RESPONSE** ONU inform NMS of the state of each channel.
- CONFIG NMS configures one or more channels in the ONU.
- CONFIG_RESPONSE ONU informs NMS of the result of the last CONFIG command (and optionally, the new state of each channel).

- It is much more efficient to query/configure all available channels (up to 2 downstream + up to 2 upstream for Nx25G-EPON) using one message than it is to use a separate message for each channel
 - One message exchange vs. multiple message exchanges

Such mechanism is easily extensible to a larger number of channels, given the size of a MAC Control message (64 octets)

November 2018

What's next for CCP

- Motion #8 from November 2017 adopted CCP implemented using MAC Control messages
- Two CCPDU shall be defined:
 - CC_REQUEST sent by the OLT to query and configure channels in an ONU
 - CC_RESPONSE sent by an ONU in response to CC_REQUEST to inform the OLT of the state of
- Details have not been provided to date and draft D1.3 features only CCP outline, with no content. This contribution brings in specification details

CCPDU structure

CC_REQUEST / CC_RESPONSE

November 2018

CCPDU Structure

- CCPDU is a MAC Control message (Length/Type = 0x8808). Similar to MPCPDU defined in Clause 144, but not timestamped
- Destination Address = unicast of a fully registered ONU or MAC Control Multicast address.
- Opcodes values 0x0020 and 0x0021 are used
- Control Multiplexer and Control Parser can properly process CCPDUs today. Additional data path from MAC Control Client needed to receive and transmit CCPDUs from MAC Control Client.

Destination Address	
Source Address	
Length/Type = 0x8808	2
Opcode = CCPDU	
Value + Padding	44
FCS	4

CC_REQUEST CCPDU

Extends CCPDU structure with downstream and upstream channel action field set as shown below

CC_RESPONSE CCPDU

Extends CCPDU structure with downstream and upstream channel status field set as shown below

Destination Address	6 /	Bits	Description
Source Address	6	0-3	Channel Status 0x0 – Channel Absent 0x1 – Enabled
Length/Type = 0x8808	2		0x2 – Remotely disabled (i.e., disabled by the NMS)
Opcode = 0x0021	/2		0x3 – Locally disabled (i.e., disabled by ONU if PMD failure is imminent)
StatusDC0	1		0x4 – Channel Failure (i.e., PMD has failed) 0x5-0xE – values reserved
StatusDC1	<u>\</u> 1	4-7	Action Result Code
Reserved	14		0x0 - No Action Requested 0x1 - Action Succeeded 0x2 Action Failed
StatusUC0	1		0x2 – Action Failed 0x3 – No Change Required (i.e. the channel is already in the
StatusUC1	1		 requested state) 0x4 – Invalid Command
Reserved	26		(i.e., an attempt to turn on a non- existent channel)
FCS	4		0x5-0xF – values reserved

Channel State Transition Matrix

Received Command

	0x00	0x01	0x02	
	No action	Disable channel	Enable channel	
0x0	0x00	0x40	0x40	
Channel	Channel absent;	Channel absent;	Channel absent;	
absent	No action requested.	Invalid command.	Invalid command.	
0x1	0x01	0x12	0x31	
Channel	Channel enabled;	Channel disabled remotely;	Channel enabled;	
enabled	No action requested.	Action succeeded.	No change required.	
0x2	0x02	0x32	0x11	
Remotely	Channel disabled remotely;	Channel disabled remotely;	Channel enabled;	
disabled	No action requested.	No change required.	Action succeeded.	
0x3	0x03	0x12	0x11	
Locally	Channel disabled locally;	Channel disabled remotely;	Channel enabled;	
disabled	No action requested.	Action succeeded.	Action succeeded.	
0x4	0x04	0x24	0x24	
Channel	Channel failure;	Channel failure;	Channel failure;	
Failure	No action requested.	Action failed.	Action failed.	

Initial Channel State

Example Request and Response

□ Request to and Response from a 50/25G-EPON ONU.

	Initia	I Channel State	nnel State CC_REQUEST Message		 CC_RESPONSE Message		
Ch	Ch. State	Description	Ch. Action	Description	Ch. Status	Description	
DCO	0x1	Channel enabled	0x02	Enable channel	0x31	Channel enabled; No change required	
DC1	0x1	Channel enabled	0x01	Disable channel	0x12	Channel remotely disabled; Action succeeded	
UCO	0x1	Channel enabled	0x00	No action	0x01	Channel enabled; No action requested	
UC1	0x0	Chanel absent	0x01	Disable channel	0x40	Channel absent; Invalid command.	

Channel designator as defined in Table 143-7

Channel Control Protocol

Behavior Description

ONU channel lineup discovery

- On registration of a new ONU, the OLT reads current ONU channel lineup (status) using unicast CC_REQUEST CCPDU, following REGISTER_ACK MPCPDU.
 - CC_REQUEST CCPDU has all channel action fields set to 0x00 ("No Action" means it is a query)
 - All CCPDUs are exchanged on MLID
- Once CC_RESPONSE CCPDU from ONU is received, channel status information is saved into OLT MAC Control client.
 - This completes the ONU channel lineup discovery process
- ONU channel lineup discovery may be initiated by the OLT MAC Control client on demand, at any time
- ONU may send unsolicited CC_RESPONSE CCPDU to notify the OLT about any changes in channel lineup, e.g., imminent TRx failure, power problems, etc.

ONU channel control

- Once ONU is registered and channel lineup is discovered, OLT MAC Control may change status of any downstream upstream channel on ONU as needed (see <u>CC_REQUEST CCPDU</u>)
 - The actual reason for channel configuration change is out of scope.
 - Channels with no configuration change needed have their associated channel action fields set to 0x00 (No Action). Channels to be disabled have their associated channel action fields set to 0x01 (Disable Channel). Finally, channels to be enabled have their associated channel action fields set to 0x02 (Enable Channel).
- ONU receives CC_REQUEST CCPDU, sends it to its MAC Control client, and attempts to implement requested changes
 - ONU MAC Control client sends <u>CC_RESPONSE CCPDU</u> with the outcome of the configuration changes for each and every supported channel, using bits 4-7 in Action Result Code portion of each channel data field
 - ONU updates *ChStatus* variable on receipt of each CC_REQUEST CCPDU
 - Response should be sent within a specific time (TBD EQT?) to provide OLT with timely response.

ONU channel config change

- ONU implements channel configuration change as soon as CC_REQUEST CCPDU is received and processed.
- OLT implements channel configuration change for the ONU
 - When OLT enables channel on ONU, OLT would commit configuration changes only when CC_RESPONSE CCPDU is received & processed.
 - There is a chance that the ONU may not implement some of required changes, e.g., enable a channel that is down due to PMD failure.
 - When a channel is disabled, OLT may commit configuration change immediately.
- Channel configuration is already reflected in MCRS.
 - MCRS always processes all channels from 0 to NUM_CH-1.
 - A disabled channel will not get any envelopes assigned from MPCP and it will not receive any data from the PCS. When PMD is shut down, the PCS will fill the gap with IEI or IBI.
 - When a channel is disabled via CCPDU, MAC Control needs to clear the envelope list for that channel, pass information to MAC Control Client for higher-layer processing, statistics collection, and to shut down the PMD for the specific channel via local management path.

Thank You