

P802.3CA **PCS/RS**

CONTACT:

MAREK HAJDUCZENIA
NETWORK ARCHITECT, PRINCIPAL ENGINEER

EMAIL: MAREK.HAJDUCZENIA@MYBRIGHTHOUSE.COM

Summary / Outline

- Per <u>ngepon 1511 work areas draft.xlsx</u>, there are several areas of interest in PCS sublayer definitions:
 - FEC selection
 - Frame coding based on 10G-EPON
 - IDLE insertion/deletion function
 - Scrambler
 - Data Detector + Synchronizer
- This presentation looks into existing definitions for 10G-EPON and suggests first order approximations for some of these functions.
 - Working assumption: <u>ngepon 1511 hajduczenia 3.pdf, page 8</u> is considered as baseline for NG-EPON architecture going forward.
- Specific items to look at in NG-EPON in more detail:
 - New more powerful stream-based FEC (per <u>effenberger 3ca 2 0316.pdf</u>)
 - Number of broadcast LLIDs to be reserved in RS

Line Coding (1)

64B/66B, with sync-header suppression for FEC calculation

Standard 64B/66B encoder defined in Clause 49

Sync header suppression: 65B blocks created from 64B data blocks

Aggregate 64B blocks to input into FEC encoder

Encode data with suppressed sync header and 0-based padding

Only data is received on output, 0-based padding is discarded

Recreate 66B blocks by adding extra XORed sync-header bit

Transmit to PMA and then into MDI

Line encoding interleaved with scrambling and FEC encoding in 10G-EPON.

Reverse data flow in receive direction!

Line Coding (2)

- In 10G-EPON, 64B/66B line encoding is applied to all data received from XGMII
- Proposal for NG-EPON:
 - Adopt per-lane 64B/66B line encoding with sync-header suppression for FEC calculation, defined for 10G-EPON, as baseline proposal for NG-EPON
 - Each data lane in NG-EPON is operated independently, i.e., line encoding, FEC encoding, etc. is done independently from other data lanes.
 - Details are described in the following subclauses:
 - Transmit direction:
 76.3.2.2, parts of 76.3.2.4 (excluding FEC encoding process)
 - Receive direction: parts of 76.3.3.3 (excluding FEC decoding process), 76.3.3.6

Scrambler

- In 10G-EPON, all data is scrambled using scrambler/descrambler pair defined in 49.2.6 / 49.2.10, respectively.
- Proposal for NG-EPON:
 - Adopt per-lane scrambler / descrambler, defined for 10G-EPON, as baseline proposal for NG-EPON
 - Each data lane in NG-EPON is operated independently, i.e., scrambling and descrambling is done independently from other data lanes.
 - Details are described in the following subclauses:

• Transmit direction: 76.3.2.3

• Receive direction: 76.3.3.5

IDLE Insertion / Deletion (1)

- In 10G-EPON, IDLE Insertion / Deletion function is responsible for adapting MAC data stream to match the effective PHY throughput.
- In 10G-EPON, transmit direction
 - IDLE deletion function (76.3.2.1) removes extra IDLE characters to de-rate MAC data stream to effective PHY throughput
 - Details defined in OLT and ONU state diagrams in 76.3.2.1.5
 - Operation relies only on size of <u>FEC data / parity components</u>
- In 10G-EPON, receive direction
 - IDLE insertion function (76.3.3.7) fills in gaps in MAC data stream created after removal of FEC parity data
 - Details defined in OLT / ONU state diagram in 76.3.3.7.5
 - Operation relies only on presence / absence of data from FEC decoder, independent of FEC code parameters

IDLE Insertion / Deletion (2)

Figure 76-10-ONU Idle Deletion state diagram

IDLE Insertion / Deletion (3)

send data from FIFO II

when data from PCS present

fill in FIFO_II when FEC Decoder signals it is done decoding next FEC codeword

Figure 76–23—PCS Idle Insertion

IDLE Insertion / Deletion (4)

- Proposal for NG-EPON:
 - Adopt per-lane IDLE deletion / insertion functions, defined for 10G-EPON, as baseline proposal for NG-EPON
 - Each data lane in NG-EPON is operated independently, i.e., IDLE insertion and deletion is done independently from other data lanes.
 - Details are described in the following subclauses:

• Transmit direction: 76.3.2.1

Receive direction: 76.3.3.7

Additional points to consider for NG-EPON

- Updates to state diagram constants will be needed if FEC code different than RS(255,223) is selected for NG-EPON
- No changes to individual data blocks needed, if 25GMII (per Clause 106) is used, the MII structure is the same as XGMII, just operated at higher clock rates (390.625 MHz ± 100ppm, see P802.3by 106.3)

FEC (1)

- In 10G-EPON, RS(255,223) FEC is used
 - 32 octets of FEC parity is added every 223 octets of data
- In transmit direction (per 76.3.2.4, see slide 2 for details)
 - FEC encoder accumulates 27 x 66-bit data blocks from XGMII
 - First sync header bit is dropped before feeding data into encoder
 - 27 x 65-bit blocks + 29 padding zeros are fed into FEC encoder
 - Only data + parity is transmitted; zero padding is discarded
- In receive direction (per 76.3.3.3)
 - Once incoming data stream is synchronized, FEC decoder processes incoming data on per FEC codeword basis
 - Decoding failures may be signaled by higher layers by setting specific value of sync header bits, invalidating whole received codeword.

FEC (2)

- Proposal for NG-EPON:
 - Adopt per-lane RS(255,223) FEC, defined for 10G-EPON, as baseline proposal for NG-EPON
 - Each data lane in NG-EPON is operated independently, i.e., FEC encoding and decoding is done independently from other data lanes.
 - Details are described in the following subclauses:

Transmit direction: 76.3.2.4

Receive direction: 76.3.3.3

- Additional points to consider for NG-EPON
 - RS(255,223) adds constant (stream-based FEC) overhead of ~14%. A lower overhead FEC might be welcome for NG-EPON.
 - <u>effenberger 3ca 2 0316.pdf</u> provides overview of other FEC code candidates for 10G-EPON, with improved gain, complexity, and overhead.

Data Detector / Synchronizer (1)

- In 10G-EPON, Data Detector present in Tx direction
 - Forms sufficient transmit delay to allow ONU insert burst markers, synchronization patterns, etc., and tells ONU when to start shutting / enabling the laser
 - Defined in 76.3.2.5, mandatory for ONU Tx (burst mode transmission) and present in OLT (but very simplified)
- In 10G-EPON, Synchronizer present in Rx direction
 - RS(255,223) was selected to support both 10G-class PIN and APD receivers. This may not be true anymore in NG-EPON
 - Processing load caused by FEC was optimized in 10G-EPON to support ASIC expected to be available by 2010. ASIC implementations in 2015 are much more powerful and more complex FEC could be used in NG-EPON.
 - RS(255,223) adds constant (stream-based FEC) overhead of ~14%. A lower overhead FEC would be welcome for NG-EPON.

Data Detector / Synchronizer (2)

Figure 76-16-Data Detector, input process state diagram

Data from FIFO_DD is sent out until FEC payload is filled in

Afterwards, FEC parity data is transmitted

receive block from FEC encoder

Data Block is added to FIFO_DD

Control Block is added to FIFO_DD only when transmitting

Incoming data is FEC encoded and added to FIFO_DD where it awaits transmission

Data Detector / Synchronizer (3)

(b) ONU state diagram

Data Detector / Synchronizer (4)

- Proposal for NG-EPON:
 - Adopt per-lane Data Detector and Synchronizer, defined for 10G-EPON, as baseline proposal for NG-EPON
 - Each data lane in NG-EPON is operated independently, i.e., Data Detector and Synchronizer is done independently from other data lanes.
 - Details are described in the following subclauses:
 - Data Detector: 76.3.2.5
 - Synchronizer: 76.3.3.1 (OLT) and 76.3.3.2 (ONU)

Other items for NG-EPON PCS (1)

- Synchronization between individual lanes
 - lane de-skew within PCS to present a single de-skewed service interface to MAC Client or within MPCP+ (compensate transmission times)?
- PCS specification itself:
 - Can we specify 25/25GBASE-PR and 25/10GBASE-PR PCS/RS and then connect these to 25/25G, 25/10G, 50G, and 100G PHYs, or do we need to specify also 50G and 100G PCS/RS?
 - Do we need to specify other PCS combinations, like 50/10G, 50/25G, etc.?

Broadcast LLIDs:

- Do we use a single broadcast LLID for all NG-EPON speeds or use one broadcast LLID for each speed, i.e., 25G, 50G, 100G ONUs?
- Do we add also need to add a broadcast LLID to reach all NG-EPON ONUs?

Other items for NG-EPON PCS (2)

- Native support for IEEE Std 802.3bf
 - time stamping at xMII (Clause 90) requires well bounded delay through stack for synchronization messages
 - See separate contribution hajduczenia_3ca_2_0516
- Native support for clock / frequency distribution
 - Some additional messaging interleaved within PCS into bit stream to facilitate clock / frequency distribution across PON?
 - Pending contribution on requirements / support
- Ability to disable FEC when operating under very favorable optical link conditions
 - Ideally, per ONU, but on per OLT would be also welcome
 - This allows operators with short optical links to recover bandwidth overhead from FEC parity, when operating on favorable ODN
 - Most likely to be removed, pending power budget analysis

THANK YOU!