

John Johnson

IEEE 802 Plenary Meeting, San Diego July 25-28, 2016

Supporters

Frank Effenberger, Huawei

25G transmitter capabilities

- In this contribution we estimate the commercial capabilities for 25G BOSA transmitters.
 - Extrapolate ongoing and planned improvements in current 25G EML and DML chip performance to volume ramp in 2020.
 - Consider BOSA configurations to make rough estimates of relative cost for 10/10G, 25/10G and 25/25G ONUs.
- 10nm grid wavelength plan with all channels in O-band is assumed for reference (johnson_3ca_1b_0516).
 - Both upstream and downstream channels in O-band for low TDP
 - 10nm channel spacing to increase filter alignment tolerances
 - Enable use of low-cost TO-can BOSA technology
 - Keeping US wavelengths below 1300nm eliminates FWM concerns (johnson_3ca_1_0716).
 - US deployment order was modified to increase guardbands for 25G ONU.
- We present measured 25Gb/s DML eyes over 20km of fiber at bias conditions consistent with the PR-30-like NG-EPON PMD (Hereafter referred to as simply "PR-30").
 - 1270nm and 1330nm bound the potential range for low TDP.
 - Pavg ~ 7.5dBm with ER = 6dB at Top = 50 to 65 $^{\circ}$ C.

Estimated PR-30-like power budget

	Unit	Value	
Fiber Channel		"PR-30" DN	"PR-30" UP
Distance	km	20	20
Split ratio		32	32
Loss, MAX	dB	29	29
Transmitter		25G EML	25G DML
Bit rate	Gb/s	25.8	25.8
Wavelength, MAX	nm	1350	1300
Avg. launch power, MIN (no margin)	dBm	7.6	7.5
Extinction ratio, MIN	dB	8	6
Launch OMA, MIN	dBm	9.2	8.3
Transmission dispersion penalty, MAX	dB	1.5	1.5
Receiver		25G APD	25G APD
BER with RS(255,223) FEC	1/s	1E-03	1E-03
Receiver sensitivity @ ER=9(6)dB	dBm	-23.5	-23.0
Receiver sensitivity @ TX ER	dBm	-23.2	-23.0
Stressed eye closure penalty	dB	1.5	1.5
Receiver sensitivity OMA, MAX	dBm	-21.3	-22.2
Stressed receiver sensitivity OMA, MAX	dBm	-19.8	-20.7

Following the RX sensitivity analysis of harstead_3ca_1a_0516, which assumes 5dB penalty between 10G and 25G APD RX.

Proposed wavelength plan

10G/10G ONU BOSA configuration

25G/10G ONU BOSA configuration

25G/25G ONU BOSA configuration

ONU BOSA construction

As described in liu_3ca_2_0516, a DS/US channel separation less than ~40nm or blocking filter with < ~10nm guardband requires the use of a collimated beam.

Liu estimated that the 3lens scheme adds 30% to the cost of a 10G BOSA and ~6mm in length.

Source: liu_3ca_2_0516

Estimated 25G ONU BOSA cost

Parameter	10/10G ONU	25/10G ONU	25/25G ONU
BOSA Optics	Focused Beam	Collimated Beam	Collimated Beam
Transmitter	1270nm 10G Uncooled DFB	1270nm 10G • Uncooled DFB •	➤ 1290nm 25G ➤ Cooled DFB
Receiver	10G APD+TIA =	►25G APD+TIA	25G APD+TIA
Diplexer Filter	1270/1577	1270/1320	> 1290/1320
Blocking Filter	1577	1320	1320
Estimated relative cost	1.0	1.6	2.7

Values are estimated commercial capability in 2020. These are still very rough estimates – more study is necessary.

Estimated 25G BOSA TX capability

Parameter	25G Cooled EML (OLT)	25G Uncooled EML (OLT)	25G Cooled DML (ONU)	25G Uncooled DML (ONU)
Top (°C)	55 ±5	-5 to 75	55 ±5	-5 to 85
Wavelength (nm)	1320-1350		1270-1300	
Max Iop (mA)	120	120	55	55
Min Pavg (dBm)	7	5	10	7
Min OMA (dBm)	8.6	6.6	10.8	7.8
Min ER (dB)	8	8	6	6
Meets target Pavg > 7.5 dBm?	No	No	Yes	No

Values are estimated commercial capability in 2020.

Collimated beam optics assumed. Focused beam optics may have higher loss.

25Gb/s directly modulated DFB – chip on carrier

1270nm

 50° C, 60mA ER = 6dB Pavg ~ 7.5dBm

Eye/Mask Mode (Acq Limit Test) Waveforms: 100 Mask Test Margins. Mask Test Scaling... Create NRZ Msk... More (2 of 2) Eye App (1, 221 min 597 will 1, 225 min 28 kinfo Rise t line () 6,93 ps 5,72 ps 8,67 ps 28 27 Apr 2016 14.38

Time:2.00 bits

20km

1330nm

 65° C, 60mA ER = 6dB Pavg ~ 7.5dBm

Conclusions

- Asymmetric 25/10G ONUs using 25G APD and uncooled 10G DFB laser will be a key component to enable cost-effective early deployment of NG-EPON.
- Cooled 25G DML in O-band will have sufficient output power for "PR-30" PMD and expect low TDP, but the ONU BOSA cost in 2020 is still expected to be high.
 - Collimated beam optics are needed for the case of all US and DS wavelengths in O-band.
 - 25G headers and flex require higher manufacturing tolerances than 10G components. This will relax as the 25G DML RF performance matures creating more margin.
 - Measurements demonstrate open 25Gb/s eyes with 6dB ER through 20km fiber from 1270nm to 1330nm.
- Uncooled 25G DML will be marginal for "PR-30" PMD even using collimated beam optics for improved coupling loss.
 - Additional study is required to reduce TDP and increase FEC gain.
 - Requires a wavelength plan with a mix of uncooled 25G and cooled 50/100G channels, complicating multiplexing for 100G modules.
- Cooled 25G O-band EML output power will be marginal to what is needed for "PR-30" downstream PMD.
 - Additional study is required to reduce TDP and increase FEC gain, but may not be sufficient.
 - Amplification (integrated SOA or external amplifier) will be required to meet the output power, with increased cost and power consumption.
- Of the laser technologies considered, only the cooled DML has the potential for meeting the "PR-30" power budget for 4x25G WDM ONU without optical amplification.

Thank You

