
August 2016 1

Glen Kramer, Broadcom
Duane Remein, Huawei

Frank Effenberger, Huawei
Mark Laubach, Broadcom

Jean-Christophe Marion, Broadcom

Multi-Point Reconciliation
Sublayer (MPRS)
[Upstream Direction]

NGEPON Motivation
 Previous Channel Bonding proposals had various shortcomings

– kramer_3ca_1a_0516.pdf: Frame-based channel bonding requires very
large buffers at the OLT to story up to 3 complete bursts per each LLID.

– kramer_3ca_3c_0716.pdf: FEC-codeword-based channel bonding
allocates an entire codeword to a single LLID. That causes an excessive
overhead in upstream and downstream directions.

 Objectives of this proposal
– Grants should be allocated to (shared among) multiple LLIDs within an ONU

– Transmission assignments to LLIDs should have granularity finer than a
whole frame or an FEC codeword (byte? Word? Dword? Qword?)

– FEC codewords should be shareable by multiple LLIDs

2

2Frame 1 Frame 3 Frame 4

FEC CW i FEC CW i+1 FEC CW i+2 FEC CW i+3

2Frame 1 Frame 3 Frame 4

FEC CW i FEC CW i+1 FEC CW i+2 FEC CW i+3

FEC CW i+4 FEC CW i+5

FEC codeword is “locked” to a single LLID

FEC codeword is shared by multiple LLIDs

August 2016

August 2016 3

MPRS Overview

NGEPON Multi-Point Reconciliation Sublayer (MPRS)

MPRS interfaces to M
MAC instances above
and L xMII instances
below

August 2016 4

Multi-Point
Reconciliation

Sublayer
(MPRS)

TXD<31:0>
TXC<3:0>
TX_CLK25

RXD<31:0>
RXC<3:0>
RX_CLK25

25GMII_1

TXD<31:0>
TXC<3:0>
TX_CLK25

RXD<31:0>
RXC<3:0>
RX_CLK25

25GMII_0

TXD<31:0>
TXC<3:0>
TX_CLK25

RXD<31:0>
RXC<3:0>
RX_CLK25

25GMII_L

PLS_DATA.request
PLS_SIGNAL.indication
PLS_DATA.indication
PLS_DATA_VALID.indication
PLS_CARRIER.indication

MAC_ 1

PLS_DATA.request
PLS_SIGNAL.indication
PLS_DATA.indication
PLS_DATA_VALID.indication
PLS_CARRIER.indication

MAC_ M

PLS_DATA.request
PLS_SIGNAL.indication
PLS_DATA.indication
PLS_DATA_VALID.indication
PLS_CARRIER.indication

MAC_0

NGEPON Precedent for multi-interface RS

 In 802.3, we already have RS with multiple MACs
above and multiple xMIIs below

August 2016 5

NGEPON
 MPRS_CTRL.request() primitive is similar to

MM_CTRL.request() in 802.3br

 MPRS_CTRL.request()
is generated in MPCP
and processed in MPRS

 Detailed
MPRS_CTRL.request()
definition is shown later

MPRS Control Primitive

August 2016 6

NGEPON 100G ONU Layering Diagram

 Each MAC is a 100 Gb/s MAC
 If not all four lanes are active at a given time, the MPRS will pause

MAC (i.e., not accept more bits) to equalize MAC and PHY data rates
August 2016 7

MPCP

PMD

Multi-Point Reconciliation Sublayer (MPRS)

MPRS_CTRL.
Request(...)

MAC
Client

(LLID 0)

OAM
(optional)

MAC
(LLID 0)

MAC
Client

(LLID 1)

OAM
(optional)

MAC
(LLID 1)

MAC
Client

(LLID N)

OAM
(optional)

MAC
(LLID N)

25
 G

M
II

PCS

PMA

25
 G

M
II

PCS

PMA

25
 G

M
II

PCS

PMA

25
 G

M
II

PCS

PMA

August 2016 8

MPRS Key Concepts

NGEPON Grant Envelope
 A grant may allocate bandwidth to multiple LLIDs

 Grant Envelope is a structure that encapsulates a
transmission by a single LLID within a grant.

 Structure of Grant Envelope:
– Wraps multiple frames with a common header, that includes LLID,

Envelope Position Alignment Marker (EPAM), and envelope length.

– Envelope payload size represents the number of units (Envelope Quanta -
EQ) granted to a given LLID in a given grant

– Beginning of an envelope may
be a full frame or a tail segment
of a frame.

– End of the envelope may be a
full frame or a head segment
of a frame.

August 2016 9

1000 500 492

250 EQ (=2000 bytes)

A

LLID

n

EPAM

250

Len

1 EQ = 8 Bytes

NGEPON
 Envelope length is expressed in units of Envelope

Quanta (EQ)

 EQ represents 8 bytes of data

 Within MPRS, EQ maps to two successive 25GMII
transfers

 Within PCS, EQ maps to a single 64b/66b coded block

Envelope Quanta

August 2016 10

0
0123456789

1
0123456789

2
0123456789

3
0123456789

4
0123456789

5
0123456789

6
0123456789

7
01

TXD<31:0> - even clockTXD<31:0> - odd clock

TXC<3:0> - odd clock TXC<3:0> - even clock

NGEPON Sharing a grant among LLIDs

August 2016 11

708

908

808

Left in MAC
LLID A:

LLID B:

LLID C:

1. ONU reported this:

1000 5001400

700 500 1500

1000 500 1200 1000LLID A: 3700 B = 463 EQ

LLID C: 2900 B = 363 EQ

LLID B: 2700 B = 338 EQ

4. ONU sent this burst:
1000 500 492 500700 592 1000 592

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24FEC:

3. ONU formed these
grant envelopes:

LLID = C
EPAM = n
Len = 200

LLID = B
EPAM = m
Len = 225

LLID = A
EPAM = k
Len = 250

1000 500 492

500700 592

1000 592

2. OLT sent this GATE2

Grant item #1

Grant item #2

Grant item #3

DA6
SA6

Type = 0x88-082
Opcode = 0x00-122

Timestamp4

A2
250 EQ (= 2000 B)4

B2
225 EQ (= 1800 B)4

C2
200 EQ (= 1600 B)4

Pad = 0
FCS4

Grant Start Time4
Ch = 0 / # of grnts = 31

NGEPON Overlapping Envelopes
 An LLID may be granted multiple overlapping grants

(envelopes).
 Data is interleaved in multiple envelopes allowing for up to 100

Gb/s transmission by a single MAC (LLID)
– Interleaving unit is EQ.

Grant for LLID A on ch. 0

Grant for LLID A on ch. 1

Grant for LLID A on ch. 2

Grant for LLID A on ch. 3

0 1 ...

... n-1 n

August 2016 12

NGEPON Completely flexible schedule
 Envelopes for different LLIDs can be scheduled independently on

different lanes
 MPRS will automatically interleave the EQs to fully utilize granted

envelopes.

August 2016 13

LLIDs A and C on ch. 0

LLIDs B and A on ch. 1

LLIDs C, A, and B on ch. 2

LLID B and A on ch. 3

75 Gb/s

50 Gb/s

25 Gb/s

0 Gb/s

100 Gb/s

August 2016 14

MPRS Operation

NGEPON
 The key part of MPRS is the 2D alignment buffer, called

TX_FIFO in the ONU (and RX_FIFO in the OLT)
– Each cell in the buffer stores one EQ

(EQ_raw, which is a 72-bit vector)
– The buffer has N columns and M rows.

• N – number of channels
» N=4 for 100 Gb/s ONU
» N=2 for 50 Gb/s ONU
» N=1 for 25 Gb/s ONU

• M should be twice as large as the
maximum upstream propagation delay
variability (MPRS@ONU to MPRS@OLT)

» Note: Because TX side does not need to
compensate for the skew, in TX_FIFO
M can be reduced to 2

– The buffer is filled in cyclic pattern
row-by-row

– The source LLID for each
cell is determined by the grants

2D Alignment Buffer

August 2016 15

TX_FIFO in ONU
RX_FIFO in OLT

0 1 ... N

0

1

2

M

.

.

.

NGEPON Main blocks in ONU MPRS Tx Path
 MPRS Input Process

– Accepts data from MAC interfaces into
TX_FIFO one EQ at a time

– Prepends a header to each envelope

 MPRS Transmit Process
– Outputs one 36-bit vector

(TXD<31:0>+TXC<3:0> to each
25GMII interface one every clock
TX_CLK

 Only one instance of each

process is running in a physical
device

August 2016 16

M
A

C
 0

2D Alignment
Buffer (TX_FIFO)

MPRS Input Process

MPRS Transmit
Process

25
 G

M
II

25
 G

M
II

25
 G

M
II

25
 G

M
II

0
1

M
A

C
 1

M
A

C
 2

M
A

C
 ..

.

M
A

C
 N

MP
RS

_C
TR

L[
4]

.re
qu

es
t(.

..)

MP
RS

_C
TR

L[
4]

.in
di

ca
tio

n(
...)

NGEPON
1. Data waiting in a queue (each box = 1 EQ)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1) on channel 0: Start=T0; Length = 9 EQ
2) on channel 1: Start=T1; Length = 4 EQ
3) on channel 2: Start=T2; Length = 11 EQ
4) on channel 3: Start=T3; Length = 5 EQ

2. Scheduled envelopes for LLID A

13 14 15
16 17

18
19 B
20 21

22 23

24

25

0
1
2
3 3
4 5
6 7
8 6 9

10 11 12

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

T0 -

T2 -

T1 -

T3 -

3. TX_FIFO Queue
(Blue boxes = envelope headers)

ch. 0

ch. 1

ch. 2

ch. 3

6 11 14 16

3 5 7 9 12 15 17 18 19 20 22

B 21 23 24 25

0 1 2 3 4 6 8 10 13

4. Transmitted envelopes for LLID A

Transmission operation

August 2016 17

NGEPON Reception operation

August 2016 18

3. Data passed to MAC (each box = 1 EQ)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

ch. 0

ch. 1

ch. 2

ch. 3

6 11 14 16

3 5 7 9 12 15 17 18 19 20 22

B 21 23 24 25

0 1 2 3 4 6 8 10 13

1. Received envelopes for LLID A
 (Red triangles show skew magnitude and direction)

13 14 15
16 17

18
19 B
20 21

22 23

24

25

0
1
2
3 3
4 5
6 7
8 6 9

10 11 12

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

T0 -

T2 -

T1 -

T3 -

2. RX_FIFO Queue
(Blue boxes = envelope headers)

 RX_FIFO is filled not based on data arrival times,
but based on the Envelope Position Alignment Marker
(EPAM) carried in each envelope header.

 RX_FIFO alignment looks identical to TX_FIFO alignment

 EQs are passed to the receiving MAC in the same order that they were taken
from the transmitting MAC

NGEPON

8

9

A

B

C

D

E

F

0

1

2

3

4

5

6

7

0 1

8

9

A

B

C

D

E

F

0

1

2

3

4

5

6

7

0 1
2

8

9

A

B

C

D

E

F

0

1

2

3

4

5

6

7

0 1

3

6

2

8

9

A

B

C

D

E

F

0

1

2

3

4

5

6

7

0 1

3 3
4

6
11

2

8

9

A

B

C

D

E

F

0

1

2

3

4

5

6

7

0 1

3 3
4 5
6

6
11

14

2

8

9

A

B

C

D

E

F

0

1

2

3

4

5

6

7

0 1

3 3
4 5
6 7

8 6
11

14

16

2

8

9

A

B

C

E

F

0

1

2

3

4

5

6

7

0

D

1

3 3
4 5
6 7

8 6 9

10 11

14

16

2

8

9

A

B

C

E

F

0

1

2

3

4

5

6

7

0

D

1

3 3
4 5
6 7

8 6 9

10 11 12

13 14

16

2

8

9

A

B

C

E

F

0

1

2

3

4

5

6

7

0

D

2

3 3
4 5
6 7

8 6 9

10 11 12

13 14 15

B

16 17

21

2

8

9

A

B

C

E

F

0

1

2

3

4

5

6

7

D

1

1

3 3
4 5
6 7

8 6 9

10 11 12

13 14 15

B

16

2

8

9

A

B

C

E

F

0

1

2

3

4

5

6

7

D

3

3 3
4 5
6 7

8 6 9

10 11 12

13 14 15

B

16 17
18

21

8

9

A

B

C

E

F

0

1

2

3

4

5

6

7

23D

4

4 5
6 7

8 6 9

10 11 12

13 14 15

B

16 17
18
19

21

24

8

9

A

B

C

E

F

0

1

2

3

4

5

6

7

23D

5 6

6 7

8 6 9

10 11 12

13 14 15

B

16 17
18
19
20 21

24
25

8

9

A

B

C

E

F

0

1

2

3

4

5

6

7

23D

7 8

8 6 9

10 11 12

13 14 15

B

16 17
18
19
20 21

24
25

8

9

A

B

C

E

F

0

1

2

3

4

5

6

7

22 23D

9 1
0
10 11 12

13 14 15

B

16 17
18
19
20 21

24
25

8

9

A

B

C

E

F

0

1

2

3

4

5

7

22 23D

1
2

6

1
1

1
3
13 14 15

B

16 17
18
19
20 21

24
25

8

9

A

B

C

E

F

0

1

2

3

4

5

7

22 23D

1
5

6

1
4

B

16 17
18
19
20 21

24
25

8

9

A

B

C

E

F

0

1

2

3

4

5

7

22 23D

1
7

6

1
6

B
18
19
20 21

24
25

8

9

A

B

C

E

F

0

1

2

3

4

5

7

22 23D

1
8

6

B19
20 21

24
25

8

9

A

B

C

E

F

0

1

2

3

4

5

7

22 23D

1
9

6

20 21

24
25

8

9

A

B

C

E

F

0

1

2

3

4

5

7

22 23D

2
0

6

2
1

24
25

8

9

A

B

C

E

F

0

1

2

3

4

5

7

22 23D

2
2

6

2
3

24
25

8

9

A

B

C

E

F

0

1

2

3

4

5

7

D

6

2
4

25

8

9

A

B

C

E

F

0

1

2

3

4

5

7

D

6

2
5

RX_FIFO Time Spread
 Write position - Read position = M/2
 RX_FIFO introduces a base delay D = M/2 * IN_CLK
 Actual delay is channel-dependent: DCH = D + SkewCH (skew can be positive or negative)

NGEPON Input Process
 Input process fills one row in

TX_FIFO buffer on each tick
of input clock IN_CLK (half of
TX_CLK)

– In case of overlapping
envelopes, blocks in multiple
columns will be retrieved
from the same MAC

 Input process keeps track of
the envelope sizes for each
LLID and won’t exceed the
allowed number of EQs.

 Input process adjusts MAC
rate to account for FEC parity
insertion in the PCS.

August 2016

BEGIN

IN_CLK

CHECK_PARITY

CHECK_ENV_SIZE

CwdLeft[wCol] ≤ FEC_PARITY_SIZE

EnvLeft[wCol] > 0

EnvLeft[wCol] ≤ 0 *
MPRS_CTRL[wCol].Request(lnk_index, env_length)

else

UCT

UCT

UCT

INSERT_FEC_PARITY_PLACEHOLDERS
TX_FIFO[wCol][wRow] ⇐ PARITY_PLACEHLDR

UCT

TX_ENVELOPE_DATA
TX_FIFO[wCol][wRow] ⇐ GetMacBlock(LnkIndex[wCol])

NO_ACTIVE_ENVELOPES
TX_FIFO[wCol][wRow] ⇐ NO_ENV_CODE
GapCount[wCol]++

TX_ENVELOPE_HEADER
GapCount[wCol] ⇐ 0
LnkIndex[wCol] ⇐ lnk_index
EnvLeft[wCol] ⇐ env_length
TX_FIFO[wCol][wRow] ⇐ EnvHeader(wCol, wRow)

UPDATE_CODEWORD_REMAINDER
CwdLeft[wCol]--

UTC

else

RESET_CODEWORD
CwdLeft[wCol] ⇐ FEC_CODEWORD_SIZE

EnvLeft[wCol] > 0

REQEST_NEXT_ENVELOPE
MPRS_CTRL[wCol].indication(CwdLeft[wCol])

UPDATE_ENVELOPE_SIZE
EnvLeft[wCol]--

else

UTC

GapCount[wCol] < GRANT_MARGIN *
CwdLeft[wCol] > 0

INIT
EnvLeft[wCol] ⇐ 0
CwdLeft[wCol] ⇐ FEC_CODEWORD_SIZE
GapCount[wCol] ⇐ GRANT_MARGIN

NEXT_ROW_ON_CLOCK
wRow ++
wCol ⇐ 0

UCT

wCol ≥ NUMBER_OF_CHANNELS

else

CHECK_ROW_COMPLETE
wCol++

else

NGEPON EQ types
 On each main loop through the Input process, all columns in one

row are filled.

 For each TX_FIFO cell, the Input process selects one of 4 types of
EQs:

1. PARITY_PLACEHLDR – special control code written when data from
MAC should be paused to allow FEC parity insertion. In the PCS
sublayer, PARITY_PLACEHLDR code is overwritten by the calculated
parity values

2. NO_ENV_CODE – special control code written when no active
envelope exists (i.e., the bandwidth was not assigned to any LLID).

3. Data EQ – an EQ that contains data (or idles) retrieved from the MAC

4. Envelope Header EQ – an EQ containing LLID value, Envelope
Position Alignment Marker (EPAM), and envelope length. Other fields
are TBD.

August 2016 21

NGEPON MMRS_CTRL Primitives
 The Input process requests the next envelope from MPCP after the completion of

the previous envelope using MPRS_CTRL[ch_index].indication(…) primitive

– MPRS_CTRL[ch_index].indication(cw_left) indicates to the MPCP that MPRS is
available for the next envelope and shows the available space in the current FEC
codeword.

– In absence of an active envelope, the MPRS_CTRL[ch_index].indication() primitive is
generated continuously on every IN_CLK transition.

– The MPCP can decide whether to issue a new envelope immediately adjacent to the
previous envelope (for envelopes that are expected to be packed in the same grant), or
wait for the start of next FEC codeword (for envelopes that are expected to be in a
separate grant).

– After the gap from the last envelope exceeds a certain margin (GRANT_MARGIN)
sufficient to turn on the laser, every MPRS_CTRL[ch_index].indication() will indicate that
a full FEC codeword is available (cw_left = FEC_CODEWORD_SIZE), implying that the
next envelope will start with a new FEC codeword.

 The MPCP requests the MPRS to transmit the next envelope using the
MPRS_CTRL.request(…) primitive

– MPRS_CTRL[ch_index].request(lnk_index, env_length) opens an envelope on a
channel ch_index for LLID lnk_index of length env_length EQs

August 2016 22

NGEPON Transmit Process
 Main function – transmit full

row from TX_FIFO buffer on
all existing channels

 Transmit process is
synchronized on TX_CLK

 One iteration of transmit
process takes two clocks,
with one 25GMII transfer
taking place on each clock

 Input clock is updated on
even ticks of TX_CLK and
runs at half the rate

August 2016 23

BEGIN

WAIT_FOR_EVEN_TX_CLOCK
rCol ⇐ 0

TX_CLK

UPDATE_INPUT_CLOCK
IN_CLK ⇐ TX_CLK

UCT

TRANSMIT_EVEN_WORD
TXD[rCol]<31:0> ⇐ TX_FIFO[rCol][rRow]<31:0>
TXC[rCol]<3:0> ⇐ TX_FIFO[rCol][rRow]<35:32>
rCol++

rCol ≥ NUMBER_OF_CHANNELS

WAIT_FOR_ODD_TX_CLOCK
rCol = 0

TX_CLK

TRANSMIT_ODD_WORD
TXD[rCol]<31:0> ⇐ TX_FIFO[rCol][rRow]<67:36>
TXC[rCol]<3:0> ⇐ TX_FIFO[rCol][rRow]<71:68>
rCol++

else

else

rCol ≥ NUMBER_OF_CHANNELS

NGEPON State Diagram Variables (1/2)
CwdLeft - This variable counts the remaining space in the FEC codeword.

Upon filling the payload portion of the codeword (CwdLeft =
FEC_PARITY_SIZE), the input process will defer taking more data
from the MAC to allow FEC parity to be inserted.

EnvLeft - Number of EQs that remain to be transmitted in the current
envelope. A separate instance of this variable exists for each
channel.

GAPCount – This variable counts the number of continuous NO_ENV_CODE EQ
values. This value exceeding the GRANT_MARGIN indicates that
the laser is turned off and the next envelope will begin a new
burst.

IN_CLK - Clock signal that corresponds to even transitions of TX_CLK.
Therefore IN_CLK runs at half the frequency of TX_CLK.

LnkIndex - Index of the LLID that is sourcing data for the current envelope. A
separate instance of this variable exists for each channel.
Different envelopes on different channels may source data from
the same LLID.

August 2016 24

NGEPON State Diagram Variables (2/2)
rCol - An integer that represents the column in TX_FIFO buffer currently

being read. Each column corresponds to a separate transmission
channel, i.e., a separate 25GMII interface.

rRow - An integer that represents the row in TX_FIFO buffer currently
being read. The value of this variable is synchronized to wRow
and is equal wRow - 1.

TXD<31:0> - See definition of 25GMII in 802.3by

TXC<3:0> - See definition of 25GMII in 802.3by

wCol - An integer that represents the column in TX_FIFO buffer currently
being populated. Each column corresponds to a separate
transmission channel, i.e., a separate 25GMII interface.

wRow - 4-bit integer that represents the row in TX_FIFO buffer currently
being populated. This variable also represents the envelope
position alignment marker and is written in the envelope header.

25 August 2016

NGEPON State Diagram Functions (1/1)
EnvHeader (LnkIndex, EnvLength, AlignmentPos) –

This function returns an EQ representing an envelope header, which has the
following format:

GetMACBlock(LnkIndex) -
This functions retrieves 8 octets (64 bits) of data from a MAC identified by
LnkIndex parameter. The function returns an EQ that contains both the data
and the corresponding 8 control bits. This is a blocking function that returns the
control to the calling routine after 64 successive invocations of
PLS_DATA.request() primitive.

26 August 2016

Bits Value Description
0-15 varies LLID value for the given envelope

16-19 varies Envelope Position Alignment Marker
(Number of bits matches the size of wRow)

20-31 0x000 Reserved (pad)

32-35 0x0 Control bits corresponding to TXC<3:0>

36-59 varies Length of envelope (in EQ)

60-67 0x00 Reserved (pad)

68-71 0x0 Control bits corresponding to TXC<3:0>

NGEPON State Diagram Primitives (1/1)
MPRS_CTRL[ch_index].indication(cw_left) -

This primitive indicates to the MPCP that MPRS is ready to start transmission of
a next envelope.
Parameters:

cw_count – the number of EQs left in the current FEC codeword at the
moment when the primitive is generated. This parameter
allows the MPCP to control whether to start the next envelope
immediately after the previous envelope ended (back-to-back)
or to align the next envelope with the beginning of a FEC
codeword.

MPRS_CTRL[ch_index].request(lnk_index, env_length) -
This primitive specifies an envelope parameters to be transmitted next. The
MPRS will start the transmission of this envelope on the next IN_CLK after the
reception of this primitive.
Parameters:

lnk_index – index of the LLID that is to source the data
env_length – length of the envelope, including the header, in units of EQ.

August 2016 27

August 2016 28

Thank You

