The Case for TDM Coexistence in O-Band

John Johnson

IEEE 802.3 Interim, Huntington Beach January 10, 2017

TDM coexistence vs. WDM coexistence

- Given previous arguments that having all channels in O-band is the best performing and lowest cost choice for NG-EPON wavelength plan (johnson_3ca_1_0117), the remaining choice is whether to implement 10G-EPON upstream coexistence with WDM or TDM.
- WDM coexistence is the default choice for a new PON standard since it preserves all of the available capacity for subscribers to the new PON, but the <u>cost of that incremental capacity</u> must be considered.
- For TDM coexistence to be chosen to the exclusion of WDM coexistence, there should be <u>significant advantages</u> to compensate for the incremental loss of capacity inherent in TDM.
- In this contribution, we present arguments that TDM coexistence confers significant cost and performance advantages over WDM, and is the best choice for NG-EPON.

The case for TDM coexistence

- Whether TDM is sufficient for coexistence with 10G-EPON without significantly impacting 25/50/100G upstream capacity is critical to the wavelength plan decision.
 - Harstead_3ca_2a_1116 showed that TDM coexistence has little impact on 25/50/100G upstream capacity for expected 10G service levels (<1Gb/s).
- TDM coexistence brings several important advantages over WDM
 - Sharing 1270±10nm spectrum with 25G US0 channel allows wider US channel spacing and laser accuracy, resulting in lower ONU optics cost
 - Enables the possibility of a low-cost uncooled upgrade path from 25/10G to 25/25G ONUs as upstream capacity demand grows.
 - Enables smaller, lower cost OLT optics using a single 10/25Gb/s dual-rate RX without extra coexistence splitter loss.
- TDM has minor challenges, but they are outweighed by the significant advantages listed above.
 - Demux with mix of passband width and channel spacing solvable using TFF demultiplexers.
 - Dual-rate 10/25G burst-mode TIA is to be developed, but not considered high risk. Proprietary tri-rate 1/10/25G TDM can also be supported.
 - Lower sensitivity of optically amplified 100G RX with 20nm passband Bonk_3ca_1_0117 predicts that this is a wash vs APD Rx if the 1270nm signal is demultiplexed with low insertion loss.

Plan A with WDM coexistence

Original Plan A (johnson_3ca_1_0916)

- 800GHz channel spacing US and DS
- ±1nm laser accuracy US and DS
- Narrow US-DS gap for 25G ONU
- Marginal DS0-DS1 guardband
- US0 marginal to 10G-EPON US
- US2 too close to ZDF region

Revised Plan A

- Shift US channels by +100GHz so US2 > 0.64nm from ZDF. Trade-off vs. smaller 10G/US0 gap.
- Increase DS0-DS1 spacing to 2.4 THz (12.4nm gap). Trade off vs. DS3 closer to 1360nm water peak region.

Even with revisions the significant costs of 2nm US passband remain.

Discussion of Plan A with WDM coexistence

- WDM coexistence can be achieved with all channels in O-band, but there are some aspects that are not ideal.
- Upstream:
 - Channel spacing is 800GHz which increases ONU mux cost (Traverso_03_0308, 802.3ba).
 - Requires 2nm passband which increases ONU laser cost and may be too narrow to support BM thermal transient (zhang_3ca_1_1116).
 - US0 must be cooled, increasing entry-level 25/25G ONU cost (harstead_3ca_1a_0716).
 - Narrow gap between 10G and US0 increases OLT filter cost.
- Downstream:
 - Channel spacing is 800GHz, increasing ONU demux cost.
 - DS3 is close to edge of water peak so loss could be high. Can shift to lower wavelength at the expense of ONU blocking filter guardband.
- Most of the upstream issues can be relieved by the use of TDM coexistence. These are the most important since they have the largest effect on ONU cost.

Plan B with TDM coexistence

Revised Plan B

- Relative to original Plan B keep
 the most important aspects:
 - TDM coexistence with 10G-EPON
 - Uncooled or semi-cooled 25G US0 is possible
- Optimize channel spacing and passband width for cost and performance:
 - Increase 100G US CS to 1.2THz and PB width to 3nm, enabling ±1.5nm laser accuracy
 - Increased guardband to US-10G and ZDF compared with Plan A
 - Same DS channel plan as the revised Plan A

Harstead_3ca_2b_0916

Details of revised Plan B channel plan

Lane	Center Freq (THz)	Center WL (nm)
US0-25G	236.06	1270.00
US0-100G	236.00	1270.31
US1	232.20	1291.10
US2	231.00	1297.80
US3	229.80	1304.58
DS0	224.60	1334.78
DS1	222.20	1349.20
DS2	221.40	1354.08
DS3	220.60	1358.99

- Channel spacing: 800GHz (DS), 1200GHz (US)
- Laser accuracy: ±1nm (DS), ±1.5nm (100G US), ±10nm (25G US)
- DS-US gap (min): 53.8nm (25G), 27.7nm (100G)
- DS0-DS1 gap (min): 12.4nm
- US0-US1 gap (min): 9.6nm (uncooled US0)
- US2 to zero dispersion range (min): 0.7nm (124GHz)

Plan B ONU optical filtering

- The 53.8nm minimum guardband enables 25/25G and 25/10G ONU diplexers using low-cost focused beam BOSA optics with < 0.1dB excess loss. (Funada_3ca_1_0117)
- The 27.7nm minimum guardband for 100G ONU diplexer dictates use of collimated beam optics. This is acceptable since standard TO-BOSA construction may not apply and 100/100G will be a premium business service.
- The 12.4nm DS0-DS1 gap allows for low-cost 25G blocking filter with focused beam.

Discussion of Plan B with TDM coexistence

- TDM coexistence Plan B addresses nearly all of the ONU cost issues identified in WDM coexistence Plan A.
- The re-use of the 1260-1280nm spectrum for US0 not only allows for the possibility of an uncooled 25/25G ONU but reduces the cost of cooled ONUs as well.
 - Harstead_3ca_1a_0716 vendor input predicts uncooled 25G DML TOSA cost is 57% of a cooled 25G DML TOSA.
 - Zhang_3ca_1_1116 vendor input predicts the cost of laser die with ±1.5nm accuracy is 69% of the cost of laser die with ±1nm accuracy.
 - Even if uncooled laser performance doesn't meet the power budget requirements, cooled DML with relaxed wavelength specs can be used.
 - Uncooled laser performance is expected to improve over the next 5 years so it is highly likely that they will be able to be deployed.
- 3nm passband width is wide enough to support burst-mode thermal transients (Zhang_3ca_1_1116).
- The 53.8nm minimum guardband enables 25/25G and 25/10G ONU diplexers using low-cost focused beam BOSA optics with < 0.1dB excess loss. (Funada_3ca_1_0117)

100G OLT RX configurations (greenfield)

Dual-Rate SOA-PIN RX

- TFF demux filters can have arbitrary center frequencies and pass-band widths.
- First channel has lowest insertion loss, < 1dB.
- Last channel has < 2.5dB insertion loss.
- Compact ROSA integration

Dual-Rate APD RX

- Split off 1270nm signals before SOA.
- Low insertion loss to 10/25G dual-rate APD RX
- More difficult to integrate separate 1270nm splitter

Straw-man power budget

- For all channels in O-band, the power budget is independent of details of the exact channel frequencies.
- Of interest for Plan B is how close are we to being able to implement 25/25G ONUs with uncooled DMLs.
- Only the 25G OLT case is analyzed here since optical amplification will be used with 100G OLTs to provided any needed gain.
- Transmitter assumptions (includes BOSA diplexer loss)
 - OLT cooled EML BOSA: Pavg > 5.5dBm, ER > 8dB, TDP < 1.5dB
 - ONU cooled DML BOSA: Pavg > 8dBm, ER > 6dB, TDP < 1.5dB</p>
 - ONU uncooled DML BOSA: Pavg > 6dBm, ER > 5dB, TDP < 1.5dB</p>
 - 100G mux loss = 2.5dB
- Receiver assumptions (includes BOSA diplexer loss)
 - No enhanced FÉC
 - ONU BOSA: Sensitivity < -24 dBm</p>
 - OLT BOSA: Sensitivity < -24dBm for APD or SOA-PIN
 - 100G demux loss = 1dB for US0(1270nm), 2.5dB for US1-3

Power budget: 25G uncooled ONU – 25G OLT

Parameter	DOWN	UP	DOWN	UP	Unit
Insertion loss, max	24	24	29	29	dB
Transmitter - 25G	Cooled EML	Uncooled DML	Cooled EML	Uncooled DML	
ER, min	8	5	8	5	dB
AVP, min	5.50	6.00	5.50	6.00	dBm
OMA, min	7.12	6.17	7.12	6.17	dBm
Rx Stressed OMA, min	-16.88	-17.83	-21.88	-22.83	dBm
Rx OMA, min	-18.38	-19.33	-23.38	-24.33	dВm
Receiver - 25G	DS0	US0	DS0	US0	
AVP Sensitivity, min	-24.00	-24.00	-24.00	-24.00	dBm
OMA Sensitivity, min	-22.38	-23.83	-22.38	-23.83	dBm
Margin: 25G - 25G	4.00	4.50	-1.00	-0.50	dB

- PR20 is no problem. There is a 1dB gap for PR30 downstream due to the limited output power of the EML TX.
 - This is a common issue for all wavelength plans, not specific to this one.
 - Lower EML ER can be traded off for higher OMA topic for future study.
- There is a 0.5dB gap for PR30 upstream with uncooled DML which can be closed by a 0.5dB improvement in FEC gain.
- 0.5dB must be added for 10/10G ONU support (brownfield) to account for the additional 10G/25G TX splitter loss, so uncooled power needs 0.5dB improvement.

Summary

- Given previous arguments that having all channels in O-band is the best performing and lowest cost choice for NG-EPON wavelength plan (johnson_3ca_1_0117), the remaining choice is whether to implement 10G-EPON upstream coexistence with WDM or TDM.
- Based on the arguments given in this contribution, a TDM coexistence plan has significant cost advantages over WDM due to the limited usable spectrum between the 10G upstream and the zero dispersion window.
 - WDM coexistence dictates the use of 800GHz channel spacing with 2nm passband width which increases ONU optics cost starting with entry-level 25/25G ONUs.
 - TDM coexistence not only increases upstream channel spacing and passband width by 50% but enables the possibility of using uncooled DMLs which are the single most powerful tool for reducing ONU cost.
 - WDM coexistence should only be chosen if service providers consider it to be essential based on 10G and 25G service level requirements.
- The task force is urged to adopt TDM coexistence in the upstream direction as the baseline for the P802.3ca standard.
 - The revised Plan B shown on slide 7 is one proposed implementation that meets the necessary performance requirements.
 - Small changes to the center frequencies and passband widths can be discussed during the drafting process without affecting the overall benefits of the plan.

Proposed motion

• Motion #2: The P802.3ca standard shall specify that the first 25G upstream wavelength shall be 1270±10nm and shall coexist with 10G-EPON by time-division multiplexing (TDM).

Thank You!

