Reassembly Buffer and Working Mechanism

Contributors:

Wei Liang Zhang, ZTE
Jun Shan Wey, ZTE
Li Quan Yuan, ZTE
Yong Guo, ZTE

Supporters:

Frank Effenberger, Huawei Duane Remein, Huawei

Background

- kramer_3ca_1_0117_sar_01.pdf discusses dimensioning of reassembly buffers at the OLT, points out the reassembly buffer problem and presents several methods.
 - How to support a large number of ULIDs/PLIDs while keeping memory requirements reasonable?
 - What is the reasonable reassembly buffer size?
- Other ideas are called for.

Problem Statement NGVEPO	Summary NGOEPO	
 100G-EPON supports up to 56K ULIDs and 4K PLIDs (see kramer_3ca_1b_0916.pdf) 100G-EPON needs to support jumbo frames (10KBytes) Static memory allocation is not feasible 60K x 10KB = 600 MBytes 	 Method #1 - Static Flow Limit Method #1a - Static Flow+Frame Limit Method #2 - Dynamic Slot Reservation Method #2a - Dynamic Allocation Method #3 - Static Frame/Dynamic Slot Method #4 - Token Granting 	
How to support a large number of ULIDs/PLIDs while keeping memory requirements reasonable?		
What is the reasonable reassembly buffer size? - 2MB, 4MB?	□ Any other ideas? □ Straw Polls	
Examples in this presentation will assume 4MB reassembly buffer per PON port		

Concept of fragmentable flow

- kramer_3ca_1_0117_sar_01 introduces the concept of fragmentable flow.
- A fragmentable flow
 - may generate fragments on ONU side and need reassembly buffer on OLT side.
 - means a ULID which is allowed to send fragments.
- The number of fragmentable flows
 - equals the number of ULIDs supporting fragment.
 - decides the size of needed reassembly buffer.
 - should not overload the maximum reassembly buffer.
- How to support a large number of ULIDs/PLIDs while keeping memory requirements reasonable?
 - To limit the number of fragmentable flows. HOW?

Method #1 - Static Flow Limit

- ☐ Limit the number of fragmentable flows
- Add a field to the ULID assignment attribute to indicate whether that ULID is allowed to send fragments or not.
- Each fragmentable ULID gets a 10K reassembly slot permanently assigned to it.
 - With 4MB buffer and 10KB max frame size, we can have 400 fragmentable ULIDs per PON.
- 400 ULIDs out of 56K is just 0.7%.
- Unfragmentable ULIDs constitute the majority and will cause transmission inefficiency because OLT does not know the frame boundaries
- ☐ Hooks required from 802.3ca: a flag (boolean field) in the ULID assignment attribute

Concept of Group Link ID (GLID)

- kramer_3ca_1a_0916_PLID_ULID shows the concept of Group Link ID (GLID).
 - A GLID is a collection of ULIDs within an ONU.
 - OLT may grant individual ULIDs and/or GLIDs.
 - The grant for a GLID is further allocated to member ULIDs according to the configured allocation mode.
 - A member ULID still represents an individual fragmentable flow.
- ☐ Is it possible that member ULIDs are not granted?
 - Member ULIDs share the grant for their GLID.
 - A member ULID does not represent an individual fragmentable flow any more.
- Note: PLIDs and ULIDs are both LLIDs, so a PLID could be independent or merged into a GLID.

A Smarter Bulk Granting

- Define Group Link ID (GLID) to be a collection of ULIDs within an ONU.
- One or many GLIDs can be provisioned in each ONU by management. For example:
 - GLID1 → {ULID1, ULID2, ULID5}
 - GLID2 → {ULID3, ULID4}
 - GLID3 → {ULID5, ULID6, ULID7, ULID8 }
- The scheduler may grant individual ULIDs and/or GLIDs in the same message.

Tag Value	Pool Size	Description
0x0000	1	Reserved
0x0001	1	Broadcast PLID used for broadcasting administrative traffic (MPCPDU, OAMPDU) to all ONUs and for ONU discovery.
0x0002 - 0x0FFF	4094	Values represent PLID. The number of PLIDs is limited by number of physical ONUs on the PON.
0x1000 - 0xEFFF	57343	Values represent unicast (bidirectional) or multicast (downstream only) ULIDs.
0xF000 - 0xFEFF	3839	Reserved
0xFF00 - 0xFFFE	255	GLIDs – used for group granting only
0xFFFF	1	Broadcast ULID is used for broadcasting user traffic.

	SA
	Length/Type = 0x88-08
	Opcode = 0x00-12
	Timestamp
	Channel Assignment
	Grant Start Time
	GLID1
	600
	ULID1
	150
;	ULID2
J	0
-	ULID3
	200
	ULID4
-	50
	FCS

DA

Provisioning of GLID

- When GLIDs are provisioned for the ONU, the OAM attribute may also indicate how the grant space is to be allocated to each ULID under this GLID.
- This management attribute (TLV) is out-of-scope for 802.3ca, but it may look like this:

Field	Size (bytes)	Description
Branch	1	Branch
Leaf	2	Leaf
Length	2	Length (Value = 3 + 3N)
GLID	2	Assigned GLID value (range: 0xFF00 – 0xFFFE)
Allocation Mode	1	0x00 - Strict Priority (ULID Parameter is interpreted as priority) 0x01 - Weinhied Allocation (ULID Parameter is interpreted as weight) Other policies?
ULID[0]	2	Value of ULID[0] that is part of this granting group
Parameter[0]	1	
ULID[N-1]	2	
Parameter[N-1]	1	

Proposed solution: PLID

- Separate LLIDs into two sub-classes:
- User Link ID (ULID) logical link between a pair of MACs in OLT and ONUs used to carry user traffic
- Physical Layer ID (PLID) logical link between the OLT and a physical ONU
- ULIDs and PLIDs share the same 2¹⁶ space

Member ULIDs of one GLID share grants

Member ULIDs of one GLID share grants.

- MAC frames from member ULIDs are scheduled into a queue of GLID MAC frames, based on scheduling policies (e.g., strict priority or weight of each member ULID).
- ONU sends frames and/or fragments from GLID MAC frame queue to OLT.
- GLID is granted but its member ULIDs share the grant.

Member ULIDs of one GLID share grants (continued)

- ☐ Fragment is potentially generated at the end of a GLID grant, and the remaining fragment is sent at the beginning of the next GLID grant.
 - Member ULIDs potentially support fragment.
 - Any member ULID does not represent an individual fragmentable flow.
 - A GLID represents an individual fragmentable flow which needs reassembly buffer on OLT side.
- Only independent ULIDs and GLIDs represent individual fragmentable flows.
- By grouping ULIDs into a GLID, the number of fragmentable flows can be reduced.
- At minimal, the number of fragmentable flows equals the number of ONUs, because an ONU supports at least one fragmentable flow.

Reasonable reassembly buffer size / fragmentable flows

- The reassembly buffer size is designed by OLT vendors, based on operators' requirements.
 - Operators are encouraged to provide the requirements of reassembly buffer.
- When the configured ULIDs do not overload the reassembly buffer, they are individually granted, otherwise, some of them should be grouped into one or more GLID(s), based on operators' policy.
- The reassembly buffer should at least support one fragmentable flow per ONU.

Summary and proposals

The size of reassembly buffer is designed by OLT vendors. We propose:

- 1. The reassembly buffer should support at least one fragmentable flow per ONU.
- 2. Multiple ULIDs can be grouped into one GLID, to reduce the number of fragmentable flows.
 - OLT grants GLIDs instead of its member ULIDs.
 - MAC frames of member ULIDs are scheduled into one queue of MAC frames, to share the GLID grant.

Thank You