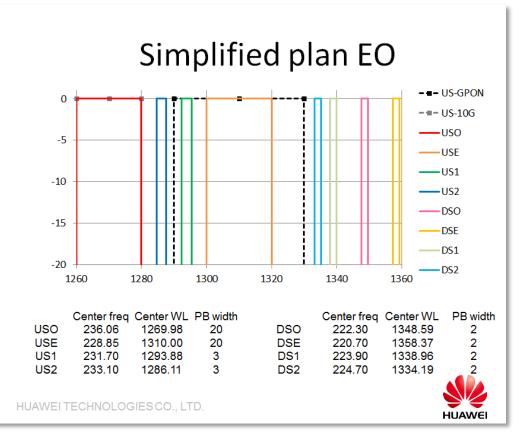
Discussion of Simplified Plan EO

July 10, 2017



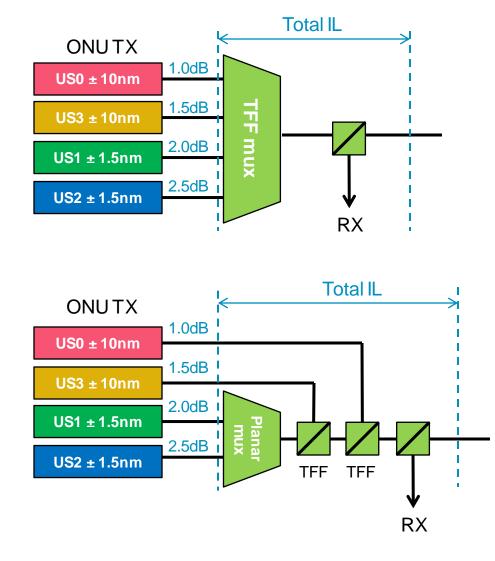
Two-Option Wavelength Plans

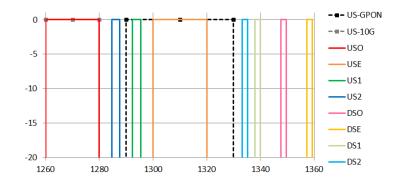
- Consensus in 802.3ca is that TDM coexistence with legacy PON systems is difficult to implement in silicon and not desirable from an operational standpoint – WDM coexistence is required.
- Although not an 802.3ca objective, WDM coexistence of 25G-EPON with 1G-EPON/GPON is an important goal.
 - GPON and 1G-EPON are the most widely deployed PON systems worldwide, so it represents a major market opportunity.
 - It's likely that a sizeable fraction of GPON systems will not be upgraded to 10G PON by the time 25G-EPON is ready to deploy.
 - Maintaining WDM coexistence with GPON is a step in the direction of NG-PON convergence with ITU-T.
- Consensus is emerging that a "two-option" wavelength plan is a viable way to meet the conflicting objectives of WDM coexistence with 10G-EPON and GPON.
 - Two markets exist with different needs, requiring two solutions.
 - Common wavelengths can be shared between the two options, allowing sharing of optical components.
 - This is not ideal from the component viewpoint, but is a workable solution.

Simplified Plan EO

F. Effenberger, <u>"Wavelength Plan Options"</u>, presented on 6/22/17 802.3ca consensus call.

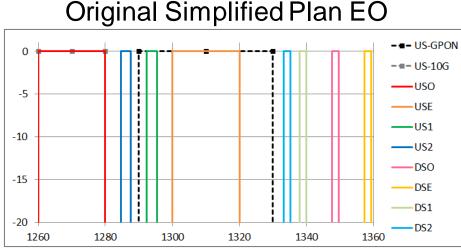
- Simplified Plan EO has 4 US wavelengths deployed in different order in two plans
- Enables low cost uncooled lasers for 25/25G ONUs in both plans.
 - "Plan E" for 10G-EPON WDM CE deploys uncooled USE first.
 - "Plan O" for GPON WDM CE deploys uncooled USO first.
- US1-US2 are used for 50/50G ONUs in both plans.
- 100/100G ONUs would add the other 20nm wide channel.



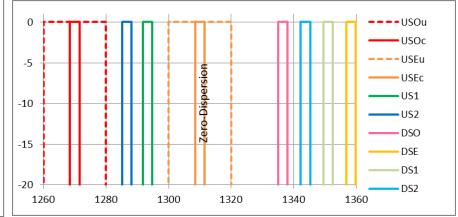

Discussion of Simplified Plan EO

- Simplified Plan EO addresses the requirements of the heterogeneous PON market: Upgrade of 1G/2.5G PON, Upgrade of 10G PON and Greenfield deployments.
 - A two option plan that preserves WDM coexistence between GPON and 25G-EPON serves as the framework for PON convergence with ITU-T.
 - Allowing for uncooled 25/25G ONUs in both options significantly reduces the cost of deployment for 25G-EPON networks.
 - WDM coexistence with 10G PON enables low cost 25/10G ONUs operating with 802.3ca protocol which can be implemented in 25G-EPON SoC ICs.
 - Using the same set of four US and four DS wavelengths in both options reduces the number of laser codes that need to be developed and manufactured, reducing ONU cost.
- There are minor issues with Simplified Plan EO that warrant discussion:
 - DS passband width is only 2nm. Should be \leq 3nm for lower cost.
 - Having more than one wide US channel adds complexity and penalties.
 - 100G ONU Tx are unlikely to use uncooled lasers due to high mux/demux insertion losses.
 - 20nm wide channels have increased SOA noise penalty in pre-amplified 100G OLT RX.
 - The solution is to define both cooled and uncooled channels at 1270 and 1310nm.
 - Having two different downstream 25G wavelengths could enable proprietary implementation of two independent 25G PONs on the same ODN, but...
 - Multiple 25G pairs on the same PON is not in scope. See Motion #3, March 2016 meeting.
 - Increased operational complexity of deploying two different versions of 25/25G ONUs.
 - Increased manufacturing cost of supporting two different versions of 25G OLT optics.
 - A single downstream wavelength plan is preferred for both coexistence options.

100G ONU TX with two wide channels

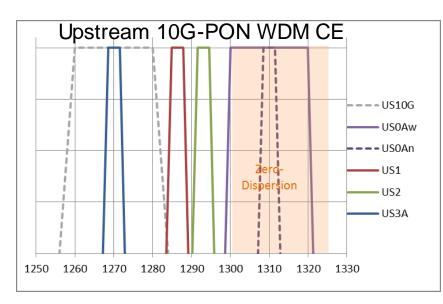


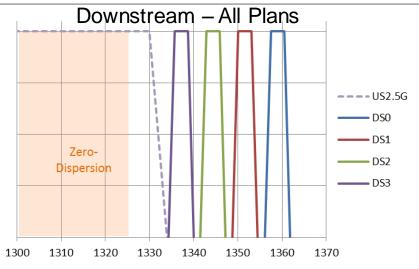
- TFF mux enables lowest IL on US0, but US1 has increased loss

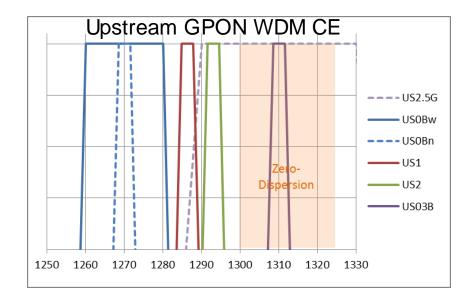

 difficult to implement with uncooled laser.
- Planar mux can handle nonuniform channel spacing, but can't do non-uniform passband width easily – must demux wide channels separately with TFF.
- Implementation with planar mux of 50G channels is complicated.
- OLT demux configurations are similar to ONU mux.

Solution: Define narrow US0/3 for 100G

Distribution of DFB center wavelength (approx.) Modified Plan EO




- For 100G ONU TX, cooled lasers will be used to overcome mux and demux losses totaling ~5dB.
- Define cooled laser wavelengths at center of uncooled channel for use by 100G TX.
- Cooled channel passband width = 3nm
- Uncooled 25G and cooled 100G TX use the same laser chip – no yield loss for cooled version, reducing cost of 100G TX.
- 100G OLT RX must still have first channel passband 20nm wide for 25G ONUs.



-3 -.50.5 3 Lambda (nm)

Modified Plan EO wavelengths

	a . –	A A A A		
Channel	Center Freq.	Center WL	PB width	
Charmer	(THz)	(nm)	(nm)	
US0Aw	228.85	1310.00	20	
US0Bw	236.05	1270.04	20	个 3.0THz
US1	233.05	1286.39	3	
US2	231.85	1293.04	3	₩₩ 1.2THz
US3A/0Bn	236.05	1270.04	3	1 3.0THz
US3B/0An	228.85	1310.00	3	V
DS0	220.60	1358.99	3	1.2THz
DS1	221.80	1351.63	3	1.2THz
DS2	223.00	1344.36	3	Y
DS3	224.20	1337.17	3	

Conclusions

- Simplified Plan EO has many benefits among the two-option plans that have been presented.
 - Options for WDM coexistence with GPON or 10G-PON.
 - Only four wavelengths are defined in upstream and downstream plans maximum re-use of optical components.
 - Wide passbands for 25/25G ONUs with uncooled DML for low cost.
 - Support for 25/10G ONUs using 802.3ca protocols for low cost.
- The minor modifications proposed in this contribution additionally provide:
 - A single downstream wavelength plan for both coexistence options for fewer OLT optics versions.
 - Increased downstream passband to 3nm for reduced laser wavelength accuracy and lower cost.
 - Only one 20nm wide channel in 100G upstream for reduced mux/demux complexity and reduced 100G OLT RX amplifier noise penalty.
 - Sharing of laser wavelengths between cooled and uncooled transmitters for cost reduction of 100G ONU TX.
- The proposed modifications should be considered if the Simplified Plan EO becomes the baseline wavelength plan.

