

# **SOA Gain Control at OLT**

Sumitomo Electric Industries, LTD D.Umeda, D.Kawase

#### **Motivation**

Two issues on SOA pre-amplifier were introduced at the last meeting in New Orleans. We studied solutions.

Dynamic range over damage threshold of PD.

"SOA pre-amplified upstream signal power in 100G-EPON", Hanhyub Lee http://www.ieee802.org/3/ca/public/meeting\_archive/2017/05/lee\_3ca\_1\_0517.pdf

Cross gain modulation from loud burst signal to weak burst signal.

"Analysis of Multi-channel Crosstalk with SOA as Pre-amplifier in 100G EPON", Dekun Liu http://www.ieee802.org/3/ca/public/meeting\_archive/2017/05/liudekun\_3ca\_1\_0517.pdf



#### **Solutions**

- OLT: Single channel SOA + SOA Gain Control
  - No Cross Gain Modulation
  - OLT received power is adjusted by SOA gain control.
- ONU: Compensation of Channel Insertion Loss
  - SOA issues are caused by variations of the channel insertion loss (ChIL) between OLT and ONUs.



## **Example Diagram of 100G Upstream**



|              | O-mux       | O-demux     | Diplexer    | ODN      | TDP         |
|--------------|-------------|-------------|-------------|----------|-------------|
| Loss Penalty | 1.5         | 1.5         | 0.5         | 29(PR30) | 2.0(DML)    |
| [dB]         | (tentative) | (tentative) | (tentative) |          | (tentative) |



**GROUP** 

## Receiver Dynamic Range and SOA Gain Control

- Fixed SOA gain (~15dB) causes high APD/PIN input over damage threshold.
- "SOA Gain Control" reducing the gain for high power is one of solutions.

802.3av APD Overload=-6dBm\* APD Damage Threshold=-5dBm 802.3ba PIN Overload=+4.5dBm\*\* PIN Damage Threshold=+5.5dBm





#### **SOA Current-Gain Characteristics**

- SOA gain can be controlled by SOA current.
- Current-Gain characteristics has wavelength dependency.





 $\lambda = 1309.768$ nm

#### **SOA Gain Control**

-5

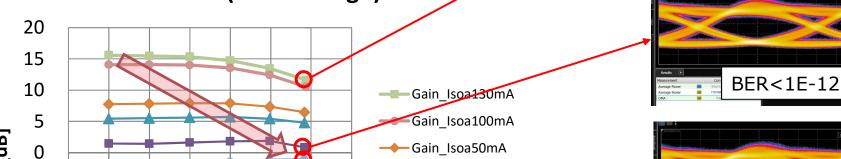
-10

-15

-20

-25

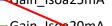
SOA Input (-0.8dBm)


**SOA Output** 

SOA output eye is good in low gain operation for high power input.






















Gain\_Isoa10mA



BER<1E-12

Pin [dBm]

-30 -25 -20 -15 -10

Optical Source: SFP28 DML/PIN 25.8Gb/s,  $\lambda$ =1309.768nm



## **Example of SOA Gain Switch in Burst Mode**

Applied pre-determined SOA current in BM and observed SOA output in BM.





## **Example of SOA Gain Switch in Burst Mode**

SOA gain is changing in BM.





## **Summary**

- Studied "SOA Gain Control" for Single Channel SOA at OLT.
- SOA gain switch itself would be possible.
- But "SOA Gain Control" is still challenging in BM. Need to detect the received power, determine and control the proper gain enough fast in burst mode.
- Additional Sync Time would be necessary.



