Clarifications on LDPC

Jinglei Huawei Gaobo Huawei Mark Laubach Broadcom

Background

100GDEPOR

□ Current issues of LDPC are mentioned in wey_3ca_1_0917 and powell_3ca_1_0917

- Error floor below 1E-12 is not verified in hardware (FPGA)
- Burst-mode operation of LDPC code is not yet proven
- CDR is verified only in continuous mode
- 2-5x increase in complexity comparing to RS code
- RS codes seems generally better suited for low-latency implementations compared to LDPC codes

We would summarize our latest research and answer the issues respectively

Error floor issue

All of the results are from below FPGA test-bench
No error floor found below 1E-12 under AWGN

September 2017

Burst-mode simulation

- The performance is better than RS at similar code rate even in burst mode
- LDPC 2k R-0.83 can achieve 1E-2 performance based on simulation

Note: error floor for both LDPC rates expected to be below 1x10-15.

	Code rate	NECG to RS (255,223)	
LDPC(18493,15677)	0.848	2.46dB(AWGN)	1.8 dB(Gilbert)
RS(1023,847)	0.828	1.34	1.35

Burst-mode verification

- Current FPGA test result shows LDPC can correct error from 7E-3 to 1e-12 at burst mode operation
 - The test results is even better than the simulation results of RS code
 - Further improvement still can be made in future

Jingyinrong_3ca_2_0717

LDPC	size	Code rate	NECG to RS (255,223)	
13X75X256	18493	0.848	2.3dB(AWGN)	1.83 dB(Gilbert)
RS(1023,847)	10230	0.828	1.34	1.35

BCDR loss of lock

Simulation result in hirth_3ca_1a_0717 shows that BCDR can operate at BER 1E-2

Complexity of FEC is deserving!

More complicated FEC enables lower cost optics

- See liu_3ca_4_0917 for more details

Still not mature enough

Latency requirement

□ Transport requirement for 5G

- 3GPP TR 38.801 V14.0.0, Table A-1, Table A-2

– One-way latency is **250us** in lower split option

÷		
Split option	Required bandwidth	Max. allowed one way latency
Option 1	[DL: 4Gb/s] [UL: 3Gb/s]	[10ms]
Option 2	[DL: 4016Mb/s] [UL:3024 Mb/s] Note: peak BW	[1.5~10ms]
Option 3	[lower than option 2 for UL/DL]	[1.5~10ms]
Option 4	[DL:4000Mb/s] [UL:3000Mb/s]	[approximate 100us]
Option 5	[DL: 4000Mb/s] [UL: 3000 Mb/s]	[hundreds of microseconds]
Option 6	[DL: 4133Mb/s] [UL:5640 Mb/s]	[250us]
Option 7a	[DL:10.1~22.2Gb/s] [UL:16.6~21.6Gb/s]	[250us]
Option 7b	[DL:37.8~86.1Gb/s] [UL:53.8~86.1 Gb/s]	[250us]
Option 7c	[DL:10.1~22.2Gb/s] [UL:53.8~86.1Gb/s]	[250us]
Option 8	[DL:157.3Gb/s] [UL: 157.3Gb/s]	25008

1) Buffer time for continuous CPRI data = multiple integer of 4.2µs

- Value of multiple integer depends on # of CPRI blocks per burst
- 2) CPRI to Ethernet encapsulation per block= 0.33µs
- 3) MAC scheduling delay (wait time for PON slot)
- 4) Buffer time for PON slot length = multiple integer of 0.42µs (matching PON cycle time to CPRI rates)
- 5) Fiber propagation delay for 20km (one way, maximum distance in 802.3ca) ≈ 100µs
- 6) Ethernet to CPRI decapsulation per block = **0.33µs**

≈ 105µs (for 1 CPRI block) + scheduling delay

145us is left for scheduling delay and PON MAC processing See powell_3ca_1_0917 for more details

Latency of LDPC

LDPC can meet the low latency requirement

- One-way latency is 250us in lower split option (in 3GPP TR 38.801 V14.0.0, Table A-1, Table A-2)
- Assume use 10us for 22CPRI block/burst then 95us left for PON MAC processing(include FEC) is well enough

zhao_3ca_1_0517

Summary

100G-EPON

- There is no Error floor issue in LDPC FEC
- There is still much better correction gain for LDPC over RS FEC at burst mode operation
- □ BCDR operating at BER 1E-2 is feasible
- The complexity of LDPC enable lower cost of optics and is acceptable
- The latency of LDPC can satisfy the requirements of low latency services(e.g. 5G front-haul)