Experimental Results of Single Wavelength 50G PON

IEEE 802.3ca Meeting Orlando, Florida
November 2017

Junwen Zhang, Jun Shan Wey, and Xingang Huang
Introduction

This contribution presents the test results of three candidate technologies for 50-Gb/s/λ TDM-PON

• Options and Requirements
• Sensitivity Analysis and Test Results
• Wavelength Options
• Challenges
Background

- In July 2017 Berlin meeting, the Task Force decided to analyze and study the solutions for single wavelength 50G PON, and compare it with two-wavelength 25G solution (wangbo_3ca_2_0717).
- In last meeting, there are two contributions on 50-Gb/s/λ TDM-PON (liu_3ca_2_0917, and houtsma_3ca_0917). Both presented analysis on modulation formats, power budget, challenges and potential solutions.
- In this contribution, we present experimental results and analysis on single wavelength 50G PON.
Four Modulation Format Options for 50-Gbps/λ

- NRZ at 50GBaud:
 - best performance with 50G optics, clock frequency at 50GHz
 - becomes Duobinary-like signal with 25G optics
- PAM-4 at 25GBaud:
 - requires 25G optics, clock frequency at 25GHz
- EDB at 50GBaud:
 - requires 25G optics, clock frequency at 50GHz
- DMT:
 - requires 10-20G optics, ~20GHz sampling rate
 - high PAPR penalty and computation complexity
Required Optics and Electronics

Optical Bandwidth
- 50G optics: can support 50G NRZ; however, very high cost and no commercial 50G APD available
- 25G optics: is a mature technology for 50Gbps in DCI
- 10G optics: low-cost, but with additional ISI penalty

Receiver
- APD: 25G APD is available now
- SOA+PIN: pre-amplifier becomes significant to improve the sensitivity

TIA
- PAM-4 and DMT require linear TIA
- DMT is much more sensitive to linearity impairments compared with PAM-4

DSP
- Either pre- or post-equalization is required to improve performance
Transceiver Setup

- **EML**: O-band, BW ~20GHz, Output Power ~2.5dBm
- **APD**: O-band, BW~18GHz
- **SOA**: 25dB small signal gain
- **PIN**: BW ~12GHz
- **DAC**: BW <20GHz, **ADC**: BW ~30GHz
25GBaud PAM-4 test results

- 17-tap FFE is used at the Rx-side;
- The Rx Sensitivity of 50Gbps PAM-4 (25GBaud):

<table>
<thead>
<tr>
<th>BER\Rx</th>
<th>APD</th>
<th>SOA+PIN</th>
<th>SOA w/ LAN-WDM +PIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1E-3</td>
<td>~-20dBm</td>
<td>~-21.5dBm</td>
<td>~-22dBm</td>
</tr>
<tr>
<td>1E-2</td>
<td>~-23dBm</td>
<td>~-23.5dBm</td>
<td>~-26.5dBm</td>
</tr>
</tbody>
</table>

- Compared with 25G NRZ by APD, PAM-4 has 7dB penalty @1e-3, and 5.5dB penalty @1E-2
- PIN using SOA with LAN-WDM filter can compensate 3.5dB @ 1E-2
- Otherwise, Tx with optical power >6dBm is required to achieve 29dB power budget @1E-2
50GBaud NRZ/EDB based on 25G Optics

To transmit the 50GBaud signals of OOK, there are two methods:

- **Method 1**
 - Tx: NRZ signal, suffering narrow-bandwidth filtering, with large ISI
 - Rx: Advanced ISI processing, i.e., MLSD for multi-symbols optimization;

- **Method 2**
 - Tx: Pre-coded EDB signals, signal bandwidth within 25GHz
 - Rx: EDB detection and regular signal equalization (FFE or FFE+DFE)

Both methods can work well to mitigate bandwidth limitation.
50GBaud NRZ test results

- 17-tap FFE is used
- The Rx sensitivity of 50G NRZ achieved:

<table>
<thead>
<tr>
<th>BER\Rx</th>
<th>APD</th>
<th>SOA+PIN</th>
<th>SOA w/ LAN-WDM+PIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1E-3</td>
<td>~-23dBm</td>
<td>~-25.2dBm</td>
<td>~-27dBm</td>
</tr>
<tr>
<td>1E-2</td>
<td>~-24.5dBm</td>
<td>~-26.8dBm</td>
<td>~-29dBm</td>
</tr>
</tbody>
</table>

- Compared with the reference 25G NRZ by APD, 50G NRZ has 4dB power penalty
- PIN using SOA without filter can compensate >2dB, SOA with filter can compensate >4dB
- Otherwise, Tx with power >4.5dBm is required to achieve 29-dB power budget @1E-2
50GBaud EDB (pre-coded) test results

- 17-tap FFE is used
- The Rx sensitivity of 50G EDB achieved:

<table>
<thead>
<tr>
<th>BER\Rx</th>
<th>APD</th>
<th>SOA+PIN</th>
<th>SOA w/ LAN-WDM +PIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1E-3</td>
<td>~-22dBm</td>
<td>~-23.6dBm</td>
<td>~-25.8dBm</td>
</tr>
<tr>
<td>1E-2</td>
<td>~-24dBm</td>
<td>~-25.5dBm</td>
<td>~-28.2dBm</td>
</tr>
</tbody>
</table>

- Compared with the reference 25G NRZ by APD, 50G EDB has 4.5~5dB power penalty
- PIN using SOA without filter can compensate 1.5dB, and SOA with filter can compensate 3.5-4dB
- Otherwise, Tx with power > 5dBm is required to achieve 29-dB power budget @1E-2
Wavelength Options

1. O-band wavelength is preferred, due to large chromatic dispersion penalty in C-band, especially for NRZ signals.

 Simulation Results: Power Penalty (dB) @1 E-3 in C-band

<table>
<thead>
<tr>
<th>CD (ps/nm)</th>
<th>0</th>
<th>16</th>
<th>80</th>
<th>160</th>
<th>240</th>
<th>320</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiber length (km)</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>PAM-4</td>
<td>0</td>
<td>0</td>
<td>0.2</td>
<td>0.7</td>
<td>1.8</td>
<td>8.5</td>
</tr>
<tr>
<td>NRZ (w/ MLSD)</td>
<td>0</td>
<td>0</td>
<td>2.2</td>
<td>6.8</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

2. If advanced DSP is enabled, C-band is also possible with CD pre-compensation and nonlinearity compensation (J. Zhang, et al., ECOC 2017, Paper P2.SC8.53)
Challenges of 50-Gb/s/λ

1. Insufficient link power budget
 - Compared with 25G NRZ, 50Gbps/λ has high power penalty: 5.5dB (PAM-4), 4dB(NRZ), and 5dB (EDB) at 1E-2

2. Cost and complexity
 - Due to large power budget gap, optical amplifier is required
 - Equalization is required
 - ADC/DAC resolution is increased compared with 25G NRZ
 - Higher linearity requirement

3. Upstream burst receiver
 - No Burst linear TIA
 - No BCDR and burst equalization

4. Technology maturity
 - Key technologies may be available after 2020
Summary

1. Test results of single-wavelength 50G PON are presented:
 • Compared with 25G NRZ by APD, PAM-4 has 7dB penalty @1e-3, and 5.5dB penalty @1E-2
 • Compared with 25G NRZ by APD, 50G NRZ has 4dB penalty
 • Compared with 25G NRZ by APD, 50G EDB has 4.5~5dB penalty

2. Due to the large power budget gap, optical amplifier is required in the system, in either Tx or Rx side;

3. Challenges exist for single wavelength 50Gbps, including insufficient link power budget, cost and availability of burst receiver.
Thank You!

Leading 5G Innovations
• At the OLT, LD at 1550 nm is used as the light-source.
• A dual-drive MZM biased at quadrature point for complex signal modulations
• The 25- and 32-Gbaud PAM-4 signals are generated by a DAC at 80 and 81.92 Gsa/s, respectively.
• The 3 dB analog bandwidth of the DAC is 16 GHz The PAM-4 symbols, followed by the LN Pre-EQ and LUT-based Pre-DT algorithm to mitigate channel impairments.
• CD pre-compensation is used for fiber transmission

J. Zhang, et al., ECOC 2017, Paper P2.SC8.53