
# Data Rate to Line Rate Conversion (Further Optimization)

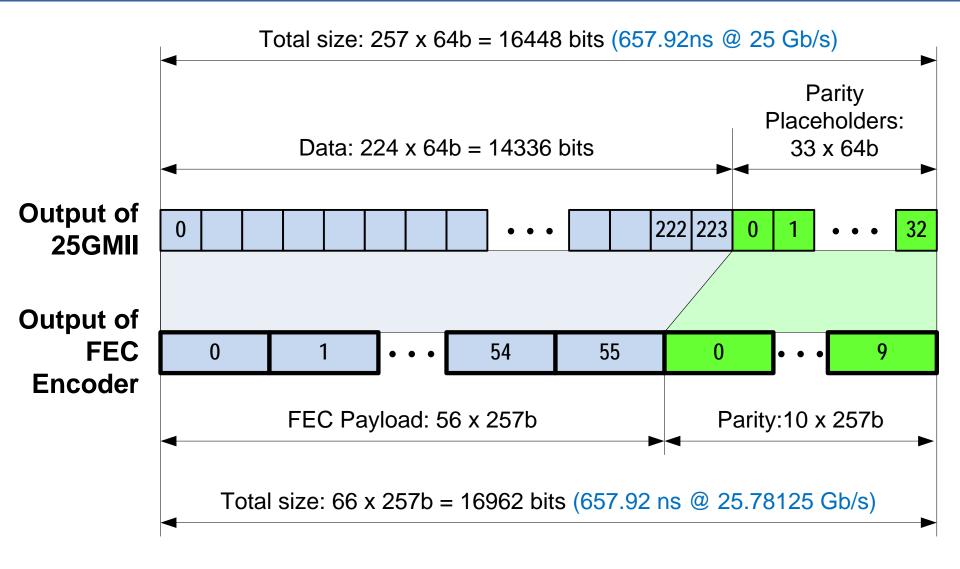
Glen Kramer (Broadcom Ltd)

# History

- The 256b/257b encoding is more efficient compared to 64b/66b and this increases the available link capacity
  - But there is a question on how to get enough data from MAC to fill the increased available link capacity.
- At the Geneva meeting, we agreed to use "approach #2" (see kramer\_3ca\_4a\_0118.pdf)
  - Keep MAC/MPRS/25GMII data rate as is and inflate the data below 25GMII to fill the extra capacity
    - This method is outlined in gao\_3ca\_1\_0118.pdf
    - MPRS generates <u>fewer</u> parity placeholders than needed for the FEC encoding.
    - PCS/FEC encoder adds the actual parity. This inflates the data to fill the extra capacity

# Illustration of 2<sup>nd</sup> approach




## The problem

- All state diagrams (functions) in PCS are defined to output fixed-size units at fixed rates
- It is hard to define a state diagram that needs to output, for example, 257-bit blocks most of the time, but occasionally a 42-bit padding.

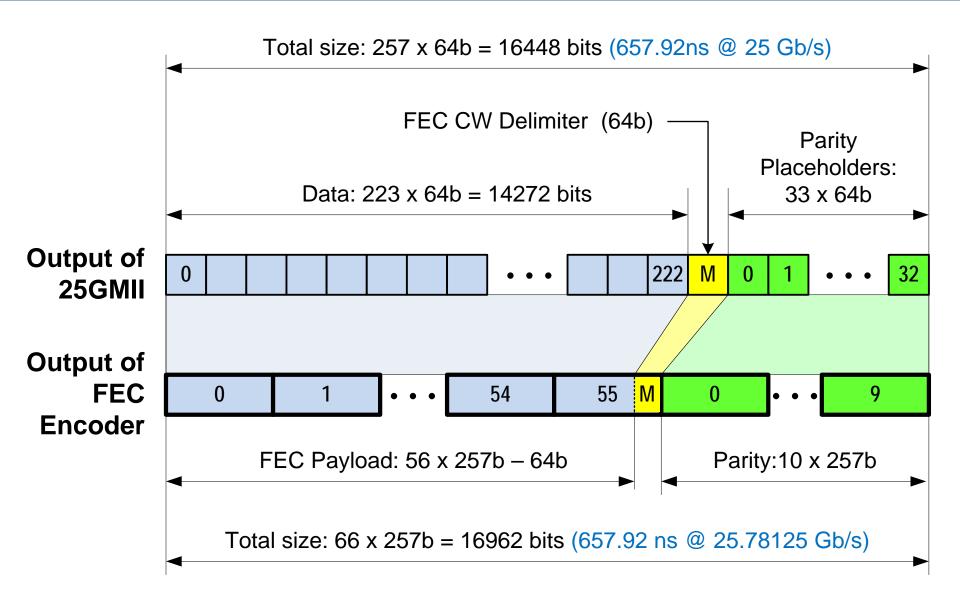
#### Solution

- If we reduce FEC codeword from 72 257-bit blocks to 66 257-bit blocks (~8.5% reduction), the MAC rate and line rate will align perfectly:
- □ 257 64-bit blocks @ 25 Gb/s = 66 257-bit blocks @ 25.78125 Gb/s
- Now, all PCS processes can operate on a fixed block size (vector) and no padding is necessary.
- ☐ FEC codeword size in units of 257-bit blocks (payload + parity)
  - Old: 61 + 11 = 72 (+42 bit padding)
  - New: 56 + 10 = 66

# Improved Alignment



## **Efficiency**

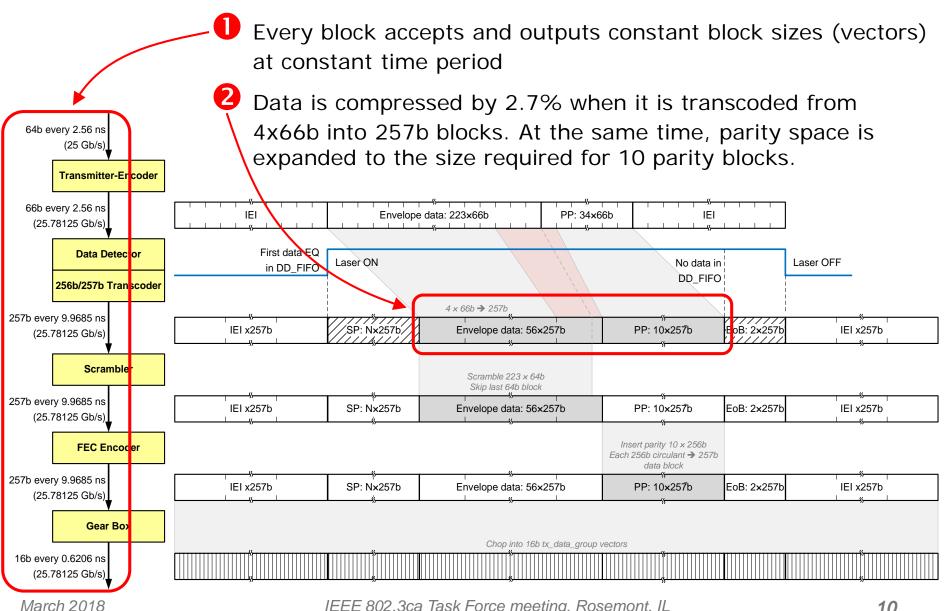

The new mapping is more efficient

|                              | Old    | New    |
|------------------------------|--------|--------|
| Code information rate        | 84.77% | 84.90% |
| FEC + Line coding efficiency | 84.20% | 84.52% |

- But, the new FEC framing leaves only 10 bits to do FEC codeword alignment.
  - ONU may take longer time to align upon power up.
- It is better to trade off extra efficiency for improved robustness
  - FEC codeword shall include an explicit alignment marker.
  - With a 64-bit marker, we get very fast alignment and good efficiency:

|                              | Old    | New+   |
|------------------------------|--------|--------|
| Code information rate        | 84.77% | 84.84% |
| FEC + Line coding efficiency | 84.20% | 84.14% |

# Improved Alignment with Marker



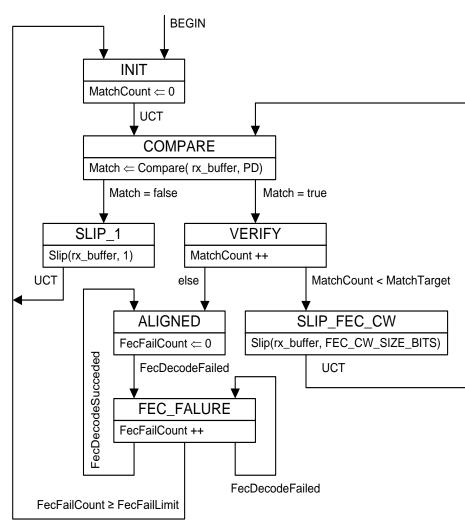

# FEC code options

The FEC codeword length reduction can be achieved by increasing the number of shortened/punctured bits, or we can come up with a new parity-check matrix

|                                                             | D0.7:<br>LDPC(18493,15677)       | More shortening/<br>puncturing                  | New Code<br>LDPC(16888,14328)           |
|-------------------------------------------------------------|----------------------------------|-------------------------------------------------|-----------------------------------------|
| Parity check matrix and circulant size                      | 13×75×256                        | 13×75×256                                       | 12×69×256                               |
| User bit length before shortening Transmitted: Shortened:   | 62×256 = 15,872<br>15,677<br>195 | 62×256 = 15,872<br>14,328<br><mark>1,544</mark> | 57×256 = 14,592<br>14,328<br><b>264</b> |
| Parity bit length before puncturing Transmitted: Punctured: | 13×256 = 3,328<br>2,816<br>512   | 13×256 = 3,328<br>2,560<br><b>768</b>           | 12×256 = 3,072<br>2,560<br><b>512</b>   |
| Codeword length before any shortening and puncturing        | 19,200                           | 19,200                                          | 17,664                                  |
| Codeword length after shortening and puncturing             | 18,493                           | 16,888                                          | 16,888                                  |
| Code rate after shortening and puncturing                   | 0.8477                           | 0.8484                                          | 0.8484                                  |
| Estimated NEOG delta vs. D0.7                               | -                                | -0.08 dB                                        | -0.03 dB                                |

#### Data Transformation within PCS




# Alignment robustness

- Let's assume that from the 64-bit marker, we only use 32 bits for fixed FEC delimiter and we reserve the remaining 32 bits for possible PHY signaling.
- ☐ Simulation analysis is coming

# FEC Alignment SD

Same alignment method as discussed in Geneva (kramer\_3ca\_1\_0118.pdf):

- 1. Hunt for PD (32-bits) in the received bit stream
  - a) If PD is not matched, MatchCount = 0, slip incoming stream by 1 bit, go to 1.
  - b) If PD is matched, MatchCount ++, slip incoming stream by 16962 bits (1 FEC CW), go to 1
- When MatchCount reaches a threshold (5?), declare the alignment
- 3. If FEC decoder consistently indicates decoding failure (for 3 consecutive FEC CWs?), set MatchCount = 0, go to 1 to realign.



#### Conclusion

- PCS state diagrams have input and output in fixed units (vectors) at constant rate. No padding to fill fractional units.
- ☐ Signal on the wire is always formatted into 257-bit blocks.
- ☐ Fast and reliable FEC alignment with 32-bit FEC delimiter
- Slightly smaller encoder/decoder latency and buffering requirement