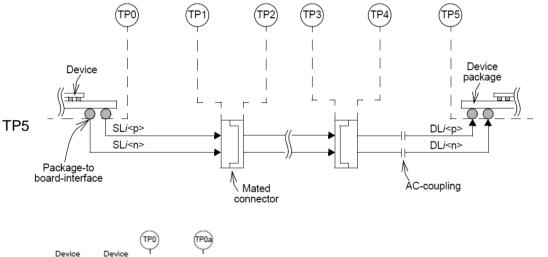
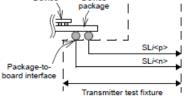
802.3cb Test Points Proposal

Anthony Calbone 1/20/2016

Supporters

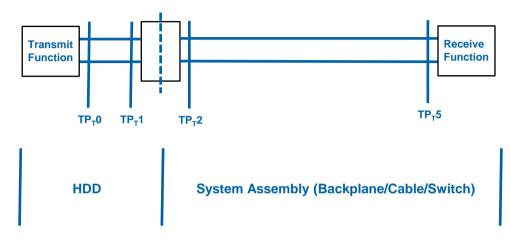
- Rich Mellitz, Intel
- William Lo, Marvell
- Peter Wu, Marvell
- Thomas Skaar, Seagate
- Dan Smith, Seagate

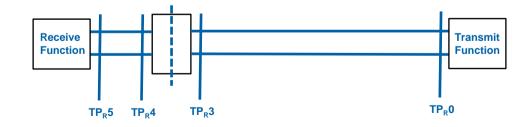

Introduction


The goal is to adopt a baseline for test point definition

- These will be used as a baseline reference to build upon. The loss budgets and tests associated with each test
 point will be based on these test points.
- There are two different models shown in the presentation that use 802.3bj as a starting point
 - A backplane reference model that is a generic model that could be a closed and/or proprietary system in which the only loss budget is ball-to-ball
 - A storage reference model that is more focused and allows for insertion loss budgeting of the HDD since it's an external interface
 - The ball-to-ball budgets are equivalent between the two models

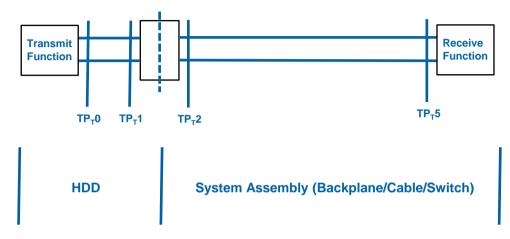
Chip Spec

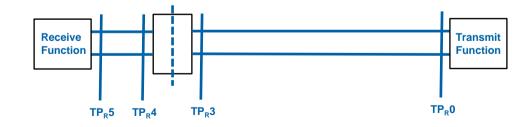

- Channel is measured from TP0 to TP5
 - Package ball to package ball
- Device Tx is measured at TP0a
 - TP0 is not observable in an implemented system
- Device Rx is measured at TP5a
 - TP5 is not observable in an implemented system
- Receiver Interference Tolerance Test is calibrated at TP5



Storage Device Spec

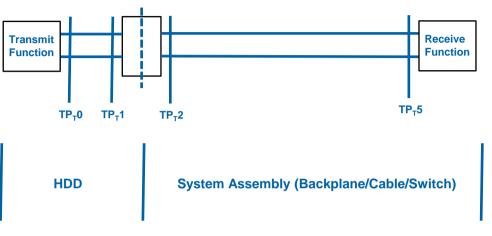
- For the storage application, it's important to budget the drive loss since it's an external component.
- The rest of the "box" is vender specific and can be any combination of cable and backplane
- This implies a Storage Reference Model with an asymmetric loss budget
 - Informative insertion loss would be the same as in the backplane reference model
- For storage device (HDD)
 - Tx is measured at TP_T2, after the mated connecter
 - Receiver Interference Tolerance Test is calibrated at TP_T4
- For host chip
 - Use pin to pin spec for compliance
 - Tx is measured at TP0a
 - Receiver Interference Tolerance Test is calibrated at TP5





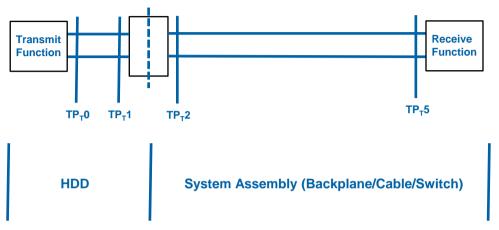
Storage Device Spec Cont'd

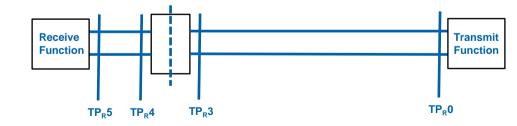
Channel


- Informative storage device loss from TP_T0 to TP_T1 and TP_R4 to TP_R5
- Informative system loss from TP_T1 to TP_T5 and TP_R0 to TP_R4
- Channel is measured from $TP_T 1$ to $TP_T 5$ and $TP_R 0$ to $TP_R 4$
- Channel loss is extrapolated from TP_T1 to TP_T0 and from TP_R4 to TP_R5 using COM



Storage Device Test Point Definitions


- TP_T0 to TP_T5 and TP_R0 to TP_R5
 - The channel including all insertion loss between package balls
 - This includes the HDD and system loss
 - This loss would be equivalent to the chip spec loss
- TP_T1 to TP_T5 and TP_R0 to TP_R4
 - Measurement of storage system is done between these points.
- TP_T0 to TP_T1 and TP_R4 to TP_R5
 - Recommended maximum insertion loss of the storage device PCB traces
- TP_T2
 - Storage device transmitter compliance point
 - TP0a is not applicable to a storage device
 - TP_T2 is observable in an implemented storage device
- TP_R3
 - Storage device receiver compliance point
 - TP5a is not applicable to a storage device
 - TP_R3 is observable in an implemented storage device



Storage Device Test Point Definitions Cont'd

- TP_R4
 - Receiver Interference Tolerance Test calibration point
 - The storage device must be compliant with the delivered signal at $\ensuremath{\mathsf{TP}_\mathsf{R}}4$
- TP_R1 to TP_T2 and TP_R3 to TP_R4
 - Recommended mated connector pair fixture loss

