# 25GBASE-LR ER, MPI

P802.3cc, May 2017 Jonathan King, Finisar

# MPI for 25GBASE-LR

- MPI penalty for 25GBASE-LR:
  - is negligible if just Tx and Rx return loss are considered
  - but becomes rapidly significant when more than one connector with return loss <35 dB is included</li>
  - MPI for various connector combinations have been calculated and are presented here

#### NRZ MPI calculations

- Spreadsheet model
  - 8 reflections (Tx, Rx, and up to 6 connectors)
  - Random modulation levels at each reflector
  - Random phase between reflectors
  - Rx noise calculated for target BER without MPI
  - ER of transmitter used to calculate 0 and 1 levels
  - Insertion loss lumped just before the receiver
  - >250k samples
  - Error probability calculated for random phase between '1' and '0' modulation levels, error probabilities averaged, and effective Q penalty calculated
    - Equivalent to assuming optical phase of '1' and '0' levels are random (e.g. DML)
  - For comparison, error probability calculated for identical phase for '1' and '0' levels, error probabilities averaged, and effective Q penalty calculated
    - Equivalent to assuming optical phase of '1' and '0' levels are identical (e.g. a zero chirp M-Z)

#### 25GBASE-LR Example statistical MPI penalty for random vs identical optical phase for modulation level 'one' and 'zero'

#### MPI penalty for

- Tx RL = 12 dB
- Rx RL = 26 dB
- IL = 6.3 dB
  - (lumped just before Rx)
- 3 x 35dB RL connectors
- ~0.02 dB higher penalty for random optical phase between '1' and '0' levels



## Tabulated MPI penalties

• 3.5 dB and 3 dB ER

| 3.5 dB ER |   | 3.5dB ER | , 26dB RL |      |      |      |
|-----------|---|----------|-----------|------|------|------|
|           |   | 0        | 1         | 2    | 3    | 4    |
| 35 dB RL  | 0 | 0.07     | 0.42      | 0.86 | 1.48 | 2.24 |
|           | 1 | 0.18     | 0.5       | 1.04 | 1.7  |      |
|           | 2 | 0.28     | 0.69      | 1.28 | 1.92 |      |
|           | 3 | 0.42     | 0.86      | 1.52 |      |      |
|           | 4 | 0.54     | 1.04      | 1.68 |      |      |

| 3 dB ER  |   | 3dB ER, 26 dB RL |      |      |      |     |
|----------|---|------------------|------|------|------|-----|
|          |   | 0                | 1    | 2    | 3    | 4   |
| 35 dB RL | 0 | 0.08             | 0.49 | 0.98 | 1.72 | 2.6 |
|          | 1 | 0.2              | 0.58 | 1.2  | 1.96 |     |
|          | 2 | 0.33             | 0.79 | 1.47 | 2.22 |     |
|          | 3 | 0.48             | 1    | 1.72 |      |     |
|          | 4 | 0.64             | 1.2  | 1.9  |      |     |

# MPI penalty vs number of 35 dB and 26 dB RL connectors



#### 25GBASE-LR MPI penalty



#### Difference between MPI penalties for 3 dB vs 3.5 dB ER

Ratio of dB MPI penalties for 3 dB vs 3.5 dB ER

### Summary

- MPI penalty for 25GBASE-LR:
  - is negligible if just Tx and Rx return loss are considered
  - but becomes rapidly significant when more than one connector with return loss <35 dB is included</li>
- The increase in MPI penalty for lowering ER from 3.5 dB to 3 dB is ~about a 20% increase in the dB MPI penalty (e.g. an MPI penalty would increase from 0.5 dB to 0.6 dB for four 35 dB RL connectors)