

# Wavelength Dependence of Multimode Fiber Bandwidth & Dual Wavelength Channel Performance

P802.3cd Ethernet Task Force IEEE 802 Plenary Session July 24-29 2016 San Diego, CA

Rick Pimpinella Jose Castro Panduit Labs, Panduit Corp.



# Outline

- Wavelength dependence of OM3/OM4 bandwidth
- Impact of two wavelengths on MPN
- Dual wavelength channel reach and BER performance
- Modal-Chromatic Interaction
- Measured channel performance
- Conclusions

#### Panduit's Ti:Sapphire DMD System



PANDUIT



#### Differential Mode Delay (DMD) Measurement DMD Test Bench - Tunable Titanium:Sapphire Laser



4

# Two Examples of DMD

#### Due to process variation, each fiber has a unique DMD



Effectively No Fiber has an "As Designed" DMD Profile

PANDUIT



#### Widespread Belief – Wavelength Dependence of EMB Is Symmetric Around 850 nm



7

- Two fibers from same cable with the same EMB (similar DMD profile)
  - ≥ L = 548 m
  - Ti:Sapphire Laser DMD





## Measured EMB Wavelength Dependence Panduit's DMD System Utilizes a Tunable Ti:Sa Laser



#### Fiber A (Left-shifted) Wavelength Dependence [1] **PANDUIT**



relative time ns/m

#### PANDUIT Fiber B (Right-shifted) Wavelength Dependence [1]



relative time, ps/m

relative time, ps/m

11

# Impact of DMD profile on channel performance [2,3]

#### Bandwidth and Noise dependence on DMD tilt

- For a similar EMB measured at 850nm, L-MMFs provide higher bandwidth at longer wavelengths than R-MMF.
- R-MMF produces higher levels of MPN due to longer separation of the modes in the MMF.
- Transceivers using equalization can partially compensate for channel bandwidth limitations. However, equalizers increase noise.





## 40GbE (2x20G) Bi-Directional, 2-λ's Measured Channel Performance



### BER at 904 nm, 40Gbps, 150m L- vs. R-Shifted DMD, EMB = 4540 MHz·km [4]



# VCSEL spatial-spectral coupling into MMF



Modal Chromatic Dispersion

PANDUIT

#### Modal-Chromatic Dispersion Interaction [5]



PANDUIT



### **Channel Performance Difference – Same EMB**

- Two fibers in same cable with the same EMB
  - 10GBASE-SR Transceiver
  - ✓ L = 548 m





17

#### **Spectral Performance Comparison, B4 and B10** (Same manufacturer & same EMB, ~2400MHz\*km)



| lumerical resu | ılts     | B4a DMD & | EMB test   | FOTP220 | Gaussian | Numerical resu | ılts B   | 10a DMD & E | MB test    | FOTP220 | Gaussiar |
|----------------|----------|-----------|------------|---------|----------|----------------|----------|-------------|------------|---------|----------|
|                | DMDouter | DMDinner  | DMDsliding | EMB     | EMB      |                | DMDouter | DMDinner    | DMDsliding | EMB     | EMB      |
| -H             | 0.213    | 0.202     | 0.181      | 2364    | 2454     | -H             | 0.240    | 0.240       | 0.216      | 2380    | 2482     |
| +H             | 0.196    | 0.196     | 0.174      | 2428    | 2504     | +H             | 0.238    | 0.236       | 0.212      | 2390    | 2442     |
| -V             | 0.197    | 0.196     | 0.186      | 2408    | 2494     | -V             | 0.257    | 0.249       | 0.216      | 2230    | 2234     |
| +V             | 0.222    | 0.208     | 0.181      | 2295    | 2381     | +V             | 0.247    | 0.238       | 0.190      | 2426    | 2545     |
| mean:          | 0.207    | 0.201     | 0.181      | 2374    | 2458     | mean:          | 0.245    | 0.240       | 0.209      | 2357    | 2426     |
| SD:            | 0.013    | 0.006     | 0.005      | 59      | 56       | SD:            | 0.009    | 0.006       | 0.013      | 86      | 135      |
|                |          |           |            |         |          |                |          |             |            |         |          |



#### **Three Transmitter spectral radial dependencies**



|                          | BERT | XFP JDSU032 | SFP+ 2M |
|--------------------------|------|-------------|---------|
| $\Delta\lambda_{c}$ (nm) | 0.72 | 0.53        | 0.22    |
| Δλ (nm)                  | 0.45 | 0.34        | 0.23    |



#### JDSU-2M Transceiver R v. L-Shifted





#### JDSU-032 Transceiver Spectral Shift well matched to B4 Fiber



20



21

#### **BERT Transmitter (spectral width 0.45nm)**



22

# Correlation Between $\Delta \lambda_c$ and $\Delta \lambda$ 136 Transceivers (+2 eSR4s)



# Conclusions

- Process variation in the fabrication of MMF refractive index profiles result in MMFs with optimized bandwidth at different wavelengths.
- Current OM3/OM4 standard test methods do not estimate EMB for wavelengths longer than 850nm.
- OM3/OM4 reaches for wavelength longer than 860 nm need to consider worst-case standard compliant fiber.
  - OM3/OM4 fibers can be L-MMF or R-MMF which has significant impact on performance. [4]
  - R-MMF has reduced bandwidth and produce higher levels of noise in equalized channels
- Current channel link models do not include the modal-chromatic interaction
  - Results in lower bandwidth and larger MPN penalty
- Channel Reach for a multi-wavelength PMD requires further study and must be based on worst-case variation in refractive index profile.



#### References

- R. Pimpinella, B. Kose, and J. Castro, "Wavelength Dependence of Effective Modal Bandwidth in OM3 and OM4 Fiber and Optimizing Multimode Fiber for Multi-Wavelength Transmission," Proceedings of the 63<sup>rd</sup> IWCS, 2014.
- J. Castro, R. Pimpinella, B. Kose, and B. Lane ,"Mode Partition Noise and Modal-Chromatic Dispersion Interaction Effects on Random Jitter," J. Lightw. Technol., vol.31, no. 15, August 2013
- 3. J. Castro, R . Pimpinella, B. Kose, and B. Lane , "Advances in characterization of the VCSEL mode partition noise penalty in optical fiber channels," OFC 2014, Th2A.13.pdf
- 4. J. Castro, R. Pimpinella, B. Kose, B. Lane, "Investigation of the Interaction of Modal and Chromatic Dispersion in VCSEL-MMF Channels," J. Lightw. Technol., vol. 30, no. 15, August 2012
- R. Pimpinella, J. Castro, B. Kose, and B. Lane, "Dispersion compensating Multimode Fiber," Proceedings 60<sup>th</sup> IWCS, 2011.



25

# BACKUP



# eSR4 VCSEL Mode Coupling, $\Delta \lambda_c$ (T = 23 °C) Diffractive Optics





### **Dual Wavelength 40Gbps BiDi Transceiver** 20Gbps per Wavelength



#### Panduit's Channel Simulation Models Peak EMB & Reach for Multi-wavelength Channels

