

TX DIFFERENTIAL PRECODER FOR 50Gb/s ELECTRICAL LINKS

Raj Hegde & Magesh Valliappan IEEE 802.3 50G/NGOATH Study Group Whistler, Canada, May, 2016

SUPPORTERS

- Upen Reddy Kareti, Cisco
- Adee Ran, Intel
- Vipul Bhatt, Inphi
- Vasu Parthasarathy, Broadcom
- Venu Balasubramonian, Marvell
- Will Bliss, Broadcom
- Pirooz Tooyserkani, Cisco
- Phil Sun, Credo Semiconductos

OUTLINE

- Need for the precoder
- Precoder deployment
- Precoder Structure
- Performance Results
- Implementation Complexity
- Summary

Need for the Precoder

- FFE/CTLE and/or DFE are used to cancel ISI due to insertion loss
- Relative contribution is implementation dependent
 - Some vendors may choose an FFE heavy design
 - Others may rely more on the DFE
- FFE/CTLE can enhance noise but do not cause error bursts
- DFEs don't cause noise enhancement
 - High insertion loss can lead to large tap weights
 - Feedback structure can cause burst errors when the tap weight is high.
- Precoder can mitigate burst errors due to high DFE tap-1
- Alternative is to restrict tap weights (limit 'a' value)
 - Makes DFEs less effective
 - Residual ISI has to be compensated for in some other way
 - Higher insertion loss budget makes this option less attractive

Precoder deployment

- Precoder to be used only when needed
- Chip-to-Chip segment
 - Can be enabled optionally using the management interface
 - Shown in hegde 3bs 01a 1115
- Backplane application
 - Can be part of the far-side transmitter tuning mechanism
 - Shown in <u>healey_3cd_01_0516</u>
- Does not impact an FFE/CTLE based design
 - Can be disabled if not needed.
- Optional precoder in the standard expands the available RX design space
 - In the spirit of the standard

Precoder

- Burst Error in the DFE:
 - Probability of k consecutive errors is a function of the tap value:
 - Tap value of 1: 0.75^k, Tap value of 0.7: 0.72^k, Tap value of 0.6: 0.62^{k}
- Precoder reduces 1-tap DFE burst error runs into 2 errors per event
 - Allows DFE taps not to be restricted while mitigating error-propagation risk.
 - RX implementations can take advantage of this feature
 - One error at the entry and one error at the exit
- Proposed Use:
 - Mandatory implementation in the TX
 - Optional implementation in the RX

Simulation Assumptions/Details

- RS (544, 514) FEC is assumed
 - No bit muxing
 - Symbol mutliplexing
 - Round robin distribution of FEC symbols to the PCS lanes & muxing in the PMA
 - Performance remains the same as multiplexing
- Gray Coding: Noise events can cause at most one bit error
- Burst error model
 - Same as <u>anslow_051116_50GE_NGOATH_adhoc</u>
- Target Performance levels
 - Frame Loss Ratio (BER equivalent): 6.2E-10 (1E-12), 6.2E-13 (1E-15), and 6.2E-15 (1E-18)
- Single PAM4 electrical link & Multi-part link scenarios

Single Electrical Link – FLR vs SNR

Single Electrical Link – FLR vs Detector Error Ratio (DER0)

Case		DER0	
FLR	6.2e-10	6.2e-13	6.2e-15
Random	7.53e-4	4.67e-4	3.44e-4
a=0.5	3.04e-4	1.32e-4	7.24e-5
a=0.5 + precoder	2.2e-4	9.76e-5	5.63e-5
Improvement	0.72	0.74	0.78
a=0.65	1.41e-4	3.49e-5	8.58e-6
a=0.65 + precoder	1.82e-4	7.86e-5	4.47e-5
Improvement	1.3	2.25	5.2
a=0.75	2.88e-5	2.40e-7	N/A
a = 0.75 + precoder	1.57e-4	6.65e-5	3.75e-5
Improvement	5.45	277	>1000

Multi-segment Link – FLR vs Detector Error Ratio (DER0)

Optical link is held at BER = 2.4e-4 (0.16dB penalty)

Case	DER0	
FLR	6.2e-10	
Random	2.73e-4	
a=0.5	1.02e-4	
a=0.5 + precoder	7.41e-5	
Improvement	0.7265	
a=0.65	3.91e-5	
a=0.65 + precoder	6.09e-5	
Improvement	1.6	
a=0.75	3.11e-6	
a = 0.75 + precoder	5.26e-5	
Improvement	17	

Implementation Complexity

- Purely digital implementation
- Area estimate and gate-count for different levels of parallelization

	10T (10 symbols/10T cycle)	16T	20T	32T
design area (um^2)	45	51	60	75
Gate count (NAND2X1 equivalent)	248	281	330	413

 Timing closure wasn't an issue as well on a commercially available advanced CMOS process node.

Summary

- Effective for burst error protection due to dominant 1st tap in the DFE
 - Improves error-tolerance by orders of magnitude
 - Expands receiver design space.
- Bypass-able option with minimal overhead
- Provides lane-level mitigation against lane-level DFE generated burst errors
 - An attractive alternative to interleaving multiple FEC codewords that would involve substantial latency penalty
- No impact to an RX that doesn't need it

