TDECQ Updates with Threshold Adjustment (2): EML & MZM Results*

Frank Chang, Inphi David Leyba, Stephen Didde, David Weldon, Keysight

* With data to support comment resolution for adding Adaptive Threshold Adj in computing TDECQ (float slicing adjustment).

IEEE802.3cd ad hoc Conference Call, 10 January 2018

Problem Statements

- Adaptive slicing seems promising to resolve TDECQ specs dilemma
 - Precise threshold is optimized to further minimize TDECQ (Csico) (mazzini_120617_3cd_adhoc-v2)
 - □ TDECQ improvements have shown using DML TX (AOI).
- □ There exists 2 major concerns associated with TDECQ (SECQ)
 - □ Is TDECQ methodology robust from different testers?
 - How adaptive slicing (vertical threshold adj) work on non-DML transmitters: VCSEL, EML, and MZM (e.g. for SRS)?
- This will facilitate the PAM4 module compliance/manufacturability without throwing away good TXs (improve yield).
- □ This report:
 - Focus on looking into test results for EML and MZM TX

TDECQ Test Configurations

Test against GOLDEN EML Tx

- Evaluation board mounted commercial PAM4 ASIC with EML driver to test board mounted 50Gb/s EMLs (<u>chang_3cd_01a_0917</u>)
- TDECQ SR tests (no test fiber)
 - PRBS 2¹⁵-1
- Reasonably open eyes with symmetric timing window to start with.
- EML TX was re-tested with varying Filter BW and the # of taps
- Post-processed SRS waveforms with Threshold Adj. (chang 3cd 01 1117)
 - MZM Ref. TX. using SSPRQ
 - Full and no stress condition

Raw eye with 19.3GHz RX filter BW

💢 Inphi

EML TX Under different # of Taps - 1

W.r.t 13.28GHz filter BW 5 Taps, TDECQ=1.78dB

7 Taps, TDECQ=1.71dB

EML TX Under different # of Taps - 2

Note: the post-processed data were actually done in 5 taps only using threshold adj. so somewhat pessimistic for larger number of taps. This has no impact to the conclusion we are making.

W.r.t 13.28GHz filter BW with Threshold Adj. (post-processed) 5 Taps, TDECQ=1.41dB 7 Taps, TDECQ=1.41dB

V Preserve Noise

Input Noise Bandwidth:

Track Input Bandwidth 13.28 GHz

Measurement

Outer OMA

TDECQ

Average Power

X Details... Limits... Setup...

XX

verage Pr

More (1/4

Current

F1 892.0 µW

F1 1.39 dB

F1 1.0785 mW

Count

1

Annotations

Results

Measurement

Outer OMA

TDECQ

Average Powe

TXX

verage

Noise Processing

Presenve Noise

Input Noise Bandwidth:

✓ Track Input Bandwidth 13.28 GHz ¥

(⊗) ₽

Count

4

1

Current

F1 888.5 µW

F1 1.39 dB

F1 1.0820 mW

EML TX Under different # of Taps - 3

With Threshold Adj (post-processed)

MZM TX Under SRS Stressed Condition - 1

13.28GHz filter BW, 5T Equalizers, <u>SSPRQ</u> (chang_3cd_01_1117)

Case 2, No Stress SECQ=1.66dB

Case 2, S.J. + G.N. SECQ=1.77dB

MZM TX Under SRS Stressed Condition - 2

13.28GHz filter BW, 5T Equalizers with Threshold Adj (post-processed) Case 2, No Stress SECQ=1.33dB Case 2, S.J.+G.N. SECQ=1.41dB

MZM TX Under SRS Stressed Condition - 3

13.28GHz filter BW, 5T Equalizers with Threshold Adj (post-processed)

MZM TX SRS TX		SECQ(dB)	
SSPRQ		SECQ Cal.	With threshold adj
Default	no stress:	1.7	1.35
	full stress	3.5	2.75
Case 2	Full stress	3.4	2.62
	No stress	1.66	1.33
	SJ Only	1.74	1.37
	SJ+GN	1.77	1.41
	SJ+SI	3.3	2.58
Case 1	Full stress	3.72	2.76
	No stress	1.7	1.34

Concluding Remarks

- EML and MZM consistently shown improvement of over 0.3dB due to threshold adjustment. And it could be higher under stressed condition.
 - The data support to implement threshold adjustment into computing TDECQ.
- EML and MZM normally show much higher RLM than directly modulated type of lasers such like DML and VCSEL.
 - RLM \geq 0.9 seems good strawman proposal to start with.

