802.3bs PROJECT DOCUMENTATION CONSIDERATION

John D'Ambrosia, Independent December 2, 2015

Preface

- It has been suggested by some that the multi-lane implementation of 200GbE and higher density 100GbE could be made part of 802.3bs.
- This presentation reviews 802.3bs documentation
 - PAR (<u>http://www.ieee802.org/3/bs/PAR_P802.3bs_14_0612.pdf</u>)
 - CSD (<u>http://www.ieee802.org/3/bs/CSD_400_14_0121.pdf</u>)

And suggests possible modifications / additions that could address the potential inclusion of 100GbE and 200GbE from recent Nov 2015 CFI.

POTENTIAL PAR CHANGES

Proposed PAR Modifications

- 2.1 Title: Standard for Ethernet Amendment: Media Access Control Parameters, Physical Layers and Management Parameters for 100Gb/s, 200Gb/s, and 400 Gb/s Operation
- **5.2.b. Scope of the project:** Define Ethernet Media Access Control (MAC) parameters, physical layer specifications, and management parameters for the transfer of Ethernet format frames at **100Gb/s**, **200Gb/s**, and 400 Gb/s.
- 5.3 Is the completion of this standard dependent upon the completion of another standard: NEEDS DISCUSSION
- 5.5 Need for the project: The project is necessary to provide solutions for aggregation & high-bandwidth interconnect in these key application areas: cloud-scale data centers, internet exchanges, co-location services, wireless infrastructure, service provider and operator networks, and video distribution infrastructure.
- 5.6 Stakeholders for the Standard: Stakeholders identified to date include but are not limited to users and producers of systems and components for internet exchanges, co-location providers, service providers and network operators, cloud-scale data centers and multiple system operators (MSOs).

POTENTIAL CSD CHANGES

Managed Objects

Describe the plan for developing a definition of managed objects. The plan shall specify one of the following:

- a) The definitions will be part of this project.
- b) The definitions will be part of a different project and provide the plan for that project or anticipated future project.
- c) The definitions will not be developed and explain why such definitions are not needed.
- The definition of protocol independent managed objects will be part of this project.
- In addition it is expected that the definition of SNMP managed objects, through reference to the protocol independent managed objects provided by this project, will be added in a future amendment to, or revision of, IEEE Std 802.3.1 IEEE Standard for Management Information Base (MIB) Definitions for Ethernet.

Proposed Changes to Managed Objects

■ No changes necessary.

Broad Market Potential

Each proposed IEEE 802 LMSC standard shall have broad market potential. At a minimum, address the following areas:

- a) Broad sets of applicability.
- b) Multiple vendors and numerous users.
- c) Balanced Costs (LAN versus attached stations) [Removed from IEEE 802 5 Criteria Nov 2012]
- Per the IEEE 802.3 Bandwidth Assessment Ad Hoc, bandwidth requirements, on average, for core networking applications are increasing by a factor of 10 every 5 years. The definition of 400 Gb/s Ethernet will address, but is not limited to, aggregation & high-bandwidth interconnect in these key application areas: cloud-scale data centers, internet exchanges, co-location services, wireless infrastructure, service provider and operator networks, and video distribution infrastructure.
- There has been wide attendance and participation in the study group by end users, equipment manufacturers and component suppliers. It is anticipated that there will be sufficient participation to effectively complete the standardization process.
- Prior experience scaling IEEE 802.3 and contributions to the study group indicates the cost distribution between routers, switches, and the infrastructure will remain acceptably balanced for 400 Gb/s Ethernet.

Proposed Changes to Broad Market Potential

Modifications –

- Per the IEEE 802.3 Bandwidth Assessment Ad Hoc, bandwidth requirements, on average, for core networking applications are increasing by a factor of 10 every 5 years. The definition of 200 Gb/s and 400 Gb/s Ethernet will address the growing diverse bandwidth requirements and cost considerations for these key application areas: cloud-scale data centers, internet exchanges, co-location services, wireless infrastructure, service provider and operator networks, and video distribution infrastructure.
- Prior experience scaling IEEE 802.3 and contributions to the study group indicates the cost distribution between routers, switches, and the infrastructure will remain acceptably balanced for 200Gb/s, and 400 Gb/s Ethernet.

Addition

- The development of 50Gb/s electrical I/O will enable the development of devices and systems capable of supporting multiple Ethernet rates, which are based on integer multiples of 50Gb/s, such as 100GbE, 200GbE, and 400GbE.
- 100 Gb/s Ethernet optical PHY types utilizing a 2 x 50 Gb/s electrical interface with an optimized SMF interface will reduce cost, size and power for links in the growing Data Center market and provide a balance in cost between network equipment and attached stations.

Compatibility

Each proposed IEEE 802 LMSC standard should be in conformance with IEEE Std 802, IEEE 802.1AC, and IEEE 802.1Q. If any variances in conformance emerge, they shall be thoroughly disclosed and reviewed with IEEE 802.1 WG prior to submitting a PAR to the Sponsor.

- a) Will the proposed standard comply with IEEE Std 802, IEEE Std 802.1AC and IEEE Std 802.1Q?
- b) If the answer to a) is "no", supply the response from the IEEE 802.1 WG.
- c) Compatibility with IEEE Std 802.3
- d) Conformance with the IEEE Std 802.3 MAC
- e) Managed object definitions compatible with SNMP (see Managed Objects)
- As an amendment to IEEE Std 802.3, the proposed project shall comply with IEEE Std 802, IEEE Std 802.1AC and IEEE Std 802.1Q.
- As was the case in previous IEEE Std 802.3 amendments, new physical layers will be defined for 400 Gb/s operation.
- As an amendment to IEEE Std 802.3, the proposed project will conform to the full-duplex operating mode of the IEEE 802.3 MAC.
- By utilizing the existing IEEE Std 802.3 MAC protocol, this proposed amendment will maintain maximum compatibility with the installed base of Ethernet nodes.

Proposed Changes to Compatibility

As was the case in previous IEEE Std 802.3 amendments, new physical layers will be defined for 100Gb/s, 200Gb/s, and-400 Gb/s operation.

Distinct Identity

Each proposed IEEE 802 LMSC standard shall provide evidence of a distinct identity. Identify standards and standards projects with similar scopes and for each one describe why the proposed project is substantially different.

Substantially different from other IEEE 802.3 specifications / solutions.

- The proposed amendment will be the first IEEE 802.3 standard operating at a 400 Gb/s MAC rate, providing an upgrade path for IEEE 802.3 users, from lower speeds such as 40 Gb/s and 100 Gb/s.
- There are no existing standards, or projects developing standards, addressing the specification of 400 Gb/s Ethernet.

Proposed Changes to Distinct Identity

Modifications –

- The proposed amendment will be the first IEEE 802.3 standard defining operation at 200 Gb/s and 400 Gb/s MAC rates, providing an upgrade path for IEEE 802.3 users, from lower speeds such as 40 Gb/s and 100 Gb/s.
- There are no existing standards, or projects developing standards, addressing the specification of <u>200 Gb/s and</u> 400 Gb/s Ethernet.

Additions

The proposed 100 Gb/s SMF PHY(s) would use two 50 Gb/s electrical interconnect lanes in each direction not currently defined in IEEE Std 802.3. Additionally, while the current IEEE Std 802.3 defines 100GbE SMF PHYs, based on 4 optical lambdas of 25Gb/s, the reduction in the number of optical lambdas would address the demand for reduced power, increased density and reduced cost with respect to these solutions.

Technical Feasibility

Each proposed IEEE 802 LMSC standard shall provide evidence that the project is technically feasible within the time frame of the project. At a minimum, address the following items to demonstrate technical feasibility:

- a) Demonstrated system feasibility.
- b) Proven similar technology via testing, modeling, simulation, etc.
- c) Confidence in reliability. [Removed from IEEE 802 CSD Nov 2013]
- The principle of scaling the IEEE 802.3 MAC to higher speeds has been well established by previous work within IEEE.
- The principle of building equipment that supports IEEE 802.3 networks operating at different Ethernet rates has been amply demonstrated by a broad set of product offerings.
- Systems with an aggregate bandwidth of greater than or equal to 400 Gb/s have been demonstrated and deployed in operational networks.
- The proposed project will build on the array of Ethernet component and system design experience, and the broad knowledge base of Ethernet network operation.
 - The experience gained in the development and deployment of 40 Gb/s and 100 Gb/s technology is applicable to the development of specifications for components at higher speeds. For example, parallel transmission techniques and forward error correction for high rate interfaces allow reuse of 40 Gb/s and 100 Gb/s technology and testing.
 - Component vendors have presented data on the feasibility of the necessary components for higher speed solutions. Proposals, which either leverage existing technologies or employ new technologies, have been provided.
- The reliability of Ethernet components and systems can be projected in the target environments with a high degree of confidence. Presentations demonstrating this have been provided.

Proposed Changes to Technical Feasibility

■ No changes needed.

Economic Feasibility

Each proposed IEEE 802 LMSC standard shall provide evidence of economic feasibility. Demonstrate, as far as can reasonably be estimated, the economic feasibility of the proposed project for its intended applications. Among the areas that may be addressed in the cost for performance analysis are the following:

- a) Balanced costs (infrastructure versus attached stations).
- b) Known cost factors.
- c) Consideration of installation costs.
- d) Consideration of operational costs (e.g. energy consumption).
- e) Other areas, as appropriate.
- In consideration of balancing costs between end stations and infrastructure it is anticipated
 the project will examine alternatives that trade off between PMD complexity and the number
 of fibers in order to maintain a reasonable balance between these two costs.
- The cost factors for Ethernet components and systems are well known. The proposed project may introduce new cost factors which can be quantified.
- In consideration of installation costs, the project is expected to use proven and familiar media, including single-mode and multimode optical fiber cabling technology.
- Network design, installation and maintenance costs are minimized by preserving network architecture, management, and software.
- In consideration of operational costs associated with power consumption, the project will examine alternatives that trade off PMD complexity, power, and implementation constraints. The project has adopted an objective to support Energy Efficient Ethernet, which will help reduce operational costs and environmental footprint.

Proposed Changes to Economic Feasibility

No suggested modifications or additions.

THE PATH FORWARD

Technology / Project Influence

Media		400G (G1)	50G	100G (Gn)	200G
PCB Traces		16X25G 8x50G	1x50G	2x50G	4x50G
ВР			1x50G	2x50G	4x50G
Cu Cable			1x50G	2x50G	4x50G
MMF		16X25G	1x50G	2x50G	4x50G
	500m	4x100G	1x50G	2x50G? 1x100G?	4x50G? 2x100G?
SMF	2km	8x50G	1x50G	2x50G? 1x100G?	4x50G? 2x100G?
	1 0km	8x50G	?	?	7
	40km		?	?	?

new technology development

Observations

- 802.3bs technology development will influence aspects of 50G/100G/200G
 - Electrical Interfaces
 - SMF (50G and / or 100G optical lambdas)
 - Multi-lane PCS / FEC Architecture
- New 50Gb/s technology development
 - Backplane
 - Twin-Ax
 - MMF
- Schedule concern Modifying 802.3bs to include 100GbE and 200GbE so it becomes dependent on completion of new 50Gb/s project.

Recommended Path Forward

- 1. Develop project documentation for single lane 50GbE for Backplane, Cu Twin-ax, SMF, and MMF objectives
- 2. Develop project documentation for 100GbE and 200GbE for Backplane, Cu Twin-ax, and MMF objectives
 - Perhaps create one PAR for Options #1 and #2?
- 3. Modify 802.3bs project documentation to address 100GbE and 200GbE electrical interfaces, 500m SMF, and 2km SMF objectives