Implementing improved extinction ratio limit

Piers Dawe Mellanox

Supporters

Mellanox

- Dazeng Feng
- Jonathan King Finisar
- Oded Wertheim Mellanox

Introduction

- To allow a variety of transmitter technologies for good performance, low power and cost, the extinction ratio spec should be reduced to as low as reasonable while protecting the link and the receiver
 - As shown in recent presentations in P802.3cd ad hoc and P802.3bs SMF ad hoc
- http://ieee802.org/3/bs/public/adhoc/smf/17 04 25/dawe 01 0417 smf.pdf
- http://ieee802.org/3/cd/public/adhoc/archive/dawe_042617_3cd_adhoc-v3.pdf
- This presentation shows two simple ways to do this for 100GBASE-DR

Transmitter setup map

Black polygon: Tx spec in D1.3, with 5 dB min. extinction ratio

 A single Tx waveform measurement is used to find TDECQ, OMA, mean power, and extinction ratio

Implementing improved extinction ratio limit

Transmitter setup map: proposal A

 A single Tx waveform measurement is used to find TDECQ, OMA, mean power, and extinction ratio

- Black polygon (partly hidden under blue one): Tx spec in D1.3, with 5 dB min. extinction ratio
- Blue polygon: proposal A
- OMA-TDECQ is increased by 0.4 dB between 3.5 and 5 dB extinction ratio, to allow for multipath interference penalty of the reflections in the draft
 - Tx spec is easier
 - Needs very good power control (output coupling, tracking, ageing)
- Channel, connectors and receivers don't change
 - Unless we change the SRS ER: see slide
 9

Transmitter setup map: proposal B

 A single Tx waveform measurement is used to find TDECQ, OMA, mean power, and extinction ratio

- Black polygon (partly hidden under blue one): Tx spec in D1.3, with 5 dB min. extinction ratio
- Blue polygon: proposal B
- OMA-TDECQ is increased by 0.4 dB at 3.5 dB extinction ratio, to allow for multipath interference penalty of the reflections in the draft
 - Gradual increase with extinction ratio avoids re-entrant corner
 - Tx spec is easier
 - Power control requirements are more reasonable
- Channel, connectors and receivers don't change
 - Unless we change the SRS ER: see slide

Option A

Table 140-6—100GBASE-DR transmit characteristics

Description	Value	Unit	
Signaling rate (range)	53.125 ± 100 ppm	GBd	
Modulation format	PAM4	_	
Wavelength (range)	1304.5 to 1317.5	nm	
Side-mode suppression ratio (SMSR), (min)	30	dB	
Average launch power (max)	4	dBm	
Average launch power ^a (min)	-2.4	dBm	
Outer Optical Modulation Amplitude (OMA _{outer}) (max)	4.2	dBm	
Outer Optical Modulation Amplitude (OMA _{outer}) (min) ^b	-0.3	dBm	
Launch power in OMA _{outer} minus TDECQ (min)			
<u>Extinction ratio</u> \geq <u>5 dB</u>	-1.3	dBm	
3.5 dB < extinction ratio < 5 dB	<u>-0.9</u>	<u>dBm</u>	
Transmitter and dispersion eye closure for PAM4 (TDECQ) (max)	2.5	dB	
Average launch power of OFF transmitter (max)	-15	dBm	
Extinction ratio (min)	<u>5</u> <u>3.5</u>	dB	
RIN _{15.5} OMA (max)	-136	dB/Hz	
Optical return loss tolerance (max)	15.5	dB	
Transmitter reflectance ^c (max)	-26	dB	

^aAverage launch power (min) is informative and not the principal indicator of signal strength. A transmitter with launch power below this value cannot be compliant; however, a value above this does not ensure compliance. ^bEven if the TDECQ < 1 dB, the OMA_{outer} (min) must exceed these values.

^cTransmitter reflectance is defined looking into the transmitter.

Option B

Table 140-6—100GBASE-DR transmit characteristics

Description	Value	Unit	
Signaling rate (range)	53.125 ± 100 ppm	GBd	
Modulation format	PAM4	—	
Wavelength (range)	1304.5 to 1317.5	nm	
Side-mode suppression ratio (SMSR), (min)	30	dB	
Average launch power (max)	4	dBm	
Average launch power ^a (min)	-2.4	dBm	
Outer Optical Modulation Amplitude (OMA _{outer}) (max)	4.2	dBm	
Outer Optical Modulation Amplitude (OMA _{outer}) (min) ^b	-0.3	dBm	
Launch power in OMA _{outer} minus TDECQ (min)			
$ER \ge 5 dB$	-1.3	dBm	
$\underline{3.5 \text{ dB}} < \underline{\text{ER}} < \underline{5 \text{ dB}}$	$0.45 - 0.27 ER^{d}$	<u>dBm</u>	
Transmitter and dispersion eye closure for PAM4 (TDECQ) (max)	2.5	dB	
Average launch power of OFF transmitter (max)	-15	dBm	
Extinction ratio (ER) (min)	5 <u>3.5</u>	dB	
RIN _{15.5} OMA (max)	-136	dB/Hz	
Optical return loss tolerance (max)	15.5	dB	
Transmitter reflectance ^c (max)	-26	dB	

^aAverage launch power (min) is informative and not the principal indicator of signal strength. A transmitter with launch power below this value cannot be compliant; however, a value above this does not ensure compliance. ^bEven if the TDECQ < 1 dB, the OMA_{outer} (min) must exceed these values.

°Transmitter reflectance is defined looking into the transmitter.

<u>d Where ER is the extinction ratio in dB</u> [Notes c and d would be reversed]

tinction ratio limit

Both options

- 140.7.9 Stressed receiver sensitivity
- Add another exception:
- The extinction ratio is to be approximately 5 dB
- Explanation: the drafts say:
- Stressed receiver sensitivity shall be within the limits given in Table 140–7 if measured using the method defined in 121.8.9 with the following exceptions
 - and
- 121.8.9.2 Stressed receiver conformance test signal characteristics and calibration
- ... set the extinction ratio of the E/O converter to approximately the minimum specified in Table 121–6.

– and

• the extinction ratio is approximately the minimum specified in Table 121–6

Backup

Implementing improved extinction ratio limit

 Transmitter provides better OMA-TDECQ at lowest extinction ratio

Options A and B at Rx (TP3) Rx Black: 100GBASE-DR per D1.3 Blue proposed Rx Black: 100GBASE-DR per D1.3 Blue proposed 4 4 Dashed: at TP3 Dashed: at TP3 3 3 Black: current draft Black: current draft Blue: proposed Blue: proposed 2 2 Magenta: locus of power in 3 Magenta: locus of power in 3 1 pAve (dBm) oAve (dBm) 0 0 -1 -1 -2 -2 -3 -3 -4 -4 -5 -5 3 -3 -2 -1 0 2 -3 -2 -1 0 2 3 1 4 1 4 OMA (dBm) OMA (dBm)

- Magenta lines show loci of equal power in runs of 3s
- Receiver overload is not affected
- Receiver sensitivity is not affected

Implementing improved extinction ratio limit

Options A and B, TP2 and TP3

