

Summary of COM problems between Channel and Rx ITT (Interference Tolerance Test)

Yasuo Hidaka Fujitsu Laboratories of America, Inc.

IEEE P802.3cd Task Force, Ad Hoc Tele Conference, June 7, 2017

Do we have enough margin for interoperability? Fujirsu

May be, unless we push Rx ITT to the limit

- i.e. May be, if the test channel of Rx ITT is very good
 - COM of the test channel before calibration is >> 3dB
 - Calibration injects a lot of broadband noise to limit COM \leq 3dB
 - Broadband noise (unbounded Gaussian noise) may be more stressful than reflection and crosstalk noise (bounded uncorrelated noise) of real channels
 - Overstress of broadband noise will serve as the margin for interoperability with real channels

Do we have enough margin for interoperability? Fujirsu

May be not, if we push Rx ITT to the limit

- i.e. May be not, if the test channel of Rx ITT is very bad
 - COM of the test channel before calibration may be already \approx 3dB
 - Calibration injects no or little broadband noise to limit COM \leq 3dB
 - Interoperability is not guaranteed due to interaction between channel and Rx as I have explained in hidaka_3cd_01a_0517.pdf, slide 4 and 5
 - Rx may be claimed to be tested in various corners of PVT variation for interoperability
 - However, if Rx barely passes Rx ITT in a particular worst PVT corner, interoperability is still not guaranteed in that particular worst PVT corner
 - Interoperability may be guaranteed only in other non-worst PVT corners

If the Test Channel of Rx ITT is Very Good ...

If the Test Channel of Rx ITT is Very Bad ...

A Solution: Restrict Test Channel Always Good Fujitsu

- By specifying Worst Return Loss of Test Channel of Rx ITT
 - Interaction between Test Channel and Rx is reduced
 - Interaction between Test Channel and Reference Rx in COM is reduced
 - Reducing interaction will shrink the limit of Test Channel variation
- Broadband noise is always injected by the calibration of Rx ITT
 It will guarantee the margin for interoperability (good)
 However, it may be overstress for Rx more than required (bad)
- To avoid overstress for Rx, we may change broadband noise with bounded uncorrelated noise (e.g. sinusoidal noise)
 This is an idea suggested by Rich Mellitz (Thanks)
- We may also revise Rx ITT COM value (it may go up or down)
- I think this looks a good direction to resolve the problem, but it takes time to develop a complete proposal and get consensus

A Quick Remedy: Use Nominal Rd and Zc Fujitsu

- Problems to use High Rd and Low Zc in Reference Rx
 - It is not the worst case at all
 - The worst case is usually High Rd and High Zc, or Low Rd and Low Zc
 - At DC and low frequency, the effect of High Rd and Low Zc is neutralized
 - At high frequency, the effect of High Rd and Low Zc may be good or bad, i.e. matched or mismatched, depending on the channel impedance close to port
 - Arbitrary matched or mismatched impedance at high frequency will enlarge the limit of variation of channel characteristics
 - It also gives misleading impression of tolerance for impedance variation

Change Rd and Zc to nominal values

- Interaction between Channel and Reference Rx in COM is reduced
 - Reducing interaction will shrink the limit of variation of channel characteristics
- It will also raise a warning that the impedance tolerance is not specified

Nominal Rd and Zc reduce Channel Variation

FUĴITSU

If we check all possible combinations of Rd and Zc values Channel Limit of Variation
If we check all possible combinations of Rd and Zc values (cover the worst cases)

If we check at a single reference of high Rd and low Zc values

Reference of high Rd and low Zc (not at the center of variation)

Limit of variation is expanded

If we check at a single reference of nominal Rd and Zc values

Reference of nominal Rd and Zc (at the center of variation)

Limit of variation is minimized

If we use Nominal Rd and Zc Values

- We need to re-calibrate Av, Afe, and Ane of COM
 - To have the max/min amplitude at TP0a/TP2 as the Tx spec
 - Do we need to revise Tx and Rx return loss?
 - No.
 - The nominal value is only for the reference package model in COM. Actual Tx and Rx still have impedance variation. Such variation should be acceptable.
- Do we need to revise Tx specifications?
 - E.g. SNDR, SNR_{ISI}, linear fit pulse peak to vf ratio
 - No.
 - Actual Tx still has impedance variation. Such variation should be acceptable.
- Any other parameters to revise?
 - Maybe Channel COM value, not to change pass/fail. Anything else?

Tx Amplitude Calibration (Clause 120D)

Clause	120D					Note
Cd	180fF					
Ср	110fF					
tr	13ps					
Dp	2					
Np	200					
Nv	13					
Test Fixture	34mm COM with Zdiff=10	Host PCB tra 00Ω (1.4058d	From TP0 to TP0a			
Scope Filter	4th-order Be	essel-Thomso				
Test Pattern	PRBS13Q					
Rd	55Ω	50Ω	50Ω	50Ω	50Ω	
Zc	90Ω	90Ω	93Ω	95Ω	100Ω	
Av, Afe 0.44V@D3.2	0.441V (0.441197V)	0.419V (0.419049V)	0.418V (0.418368V)	0.418V (0.417965V)	0.417V (0.417119V)	zp=30mm, vf=0.4V@TP0a
Ane 0.63V@D3.2	0.635V (0.634552V)	0.604V (0.604322V)	0.604V (0.604314V)	0.604V (0.604311V)	0.604V (0.604307V)	zp=12mm, Vdpp=1.2V@TP0a

Tx Amplitude Calibration (Clause 137)

Clause	137					Note
Cd	180fF					
Ср	110fF					
tr	12ps					
Dp	3					
Np	200					
Nv	13					
Test Fixture	34mm COM with Zdiff=10	Host PCB tra 00Ω (1.4058d	From TP0 to TP0a			
Scope Filter	4th-order Be	essel-Thomso				
Test Pattern	PRBS13Q					
Rd	55Ω	50Ω	50Ω	50Ω	50Ω	
Zc	90Ω	90Ω	93Ω	95Ω	100Ω	
Av, Afe 0.45V@D2.0	0.438V (0.438474V)	0.416V (0.416285V)	0.415V (0.415269V)	0.415V (0.414718V)	0.414V (0.413736V)	zp=30mm, vf=0.4V@TP0a
Ane 0.63V@D2.0	0.634V (0.634552V)	0.604V (0.604321V)	0.604V (0.604314V)	0.604V (0.604310V)	0.604V (0.604306V)	zp=12mm, Vdpp=1.2V@TP0a

Tx Amplitude Calibration (Clause 136)

Clause	136 (normative at TP2)					Note
Cd	180fF					
Ср	110fF					
tr	8ps					
Dp	3					
Np	200					
Nv	13					
Host PCB trace	COM Host F with Zc=109	PCB trace zp= .8Ω) (for Av,A	From TP0 to TP1			
Mated Test Fixture	Reference II (3.6548dB lo	_ of Mated TF oss@13.28GF	From TP1 to TP2			
Scope Filter	4th-order Be	essel-Thomso				
Test Pattern	PRBS13Q					
Rd	55Ω	50Ω	50Ω	50Ω	50Ω	
PKG Zc	90Ω	90Ω	93Ω	95Ω	100Ω	
Host PCB Zc	109.8Ω	100Ω	100Ω	100Ω	100Ω	
Av, Afe 0.45V@D2.0	0.404V (0.403798V)	0.381V (0.381300V)	0.380V (0.380483V)	0.380V (0.380050V)	0.379V (0.379321V)	zp=30mm, host zp=151mm, vf=0.34V@TP2
Ane 0.63V@D2.0	0.644V (0.643901V)	0.613V (0.613240V)	0.613V (0.613228V)	0.613V (0.613224V)	0.613V (0.613220V)	zp=12mm, host zp=72mm, Vdpp=1.2V@TP2

Tx Amplitude Calibration (Clause 136A)

Clause	136A (informative at TP0a)					Note
Cd	180fF					
Ср	110fF					
tr	8ps					
Dp	3					
Np	200					
Nv	13					
Test Fixture	34mm COM with Zdiff=10	Host PCB tra 00Ω (1.4058d	From TP0 to TP0a			
Scope Filter	4th-order Be	essel-Thomso				
Test Pattern	PRBS13Q					
Rd	55Ω	50Ω	50Ω	50Ω	50Ω	
Zc	90Ω	90Ω	93Ω	95Ω	100Ω	
Av, Afe 0.45V@D2.0	0.438V (0.438328V)	0.416V (0.416144V)	0.415V (0.415114V)	0.415V (0.414554V)	0.414V (0.413556V)	zp=30mm, vf=0.4V@TP0a
Ane 0.63V@D2.0	0.634V (0.634551V)	0.604V (0.604321V)	0.604V (0.604313V)	0.604V (0.604309V)	0.604V (0.604306V)	zp=12mm, Vdpp=1.2V@TP0a

Discrepancy with 136 is found, and either one should be fixed

Keep 136 (normative) ? 136A (informative but consistent with 137) ?

Summary

- Do we have enough margin for interoperability?
 - May be, if the test channel of Rx ITT is good
 - May be not, if the test channel of Rx ITT is bad
 - Currently, it depends on the quality of the test channel of Rx ITT
 - My revised proposal (preliminary)
 - 1. Change Rd to 50Ω
 - 2. Change PKG Zc to one of 90Ω , 93Ω , 95Ω , or 100Ω as a nominal value
 - 3. Change Host PCB trace Zc to 100Ω (only Clause 136)
 - 4. Change Av/Afe/Ane in consistent with the change of Rd and Zc
 - Alternatively, we may re-calibrate Av/Afe/Ane to get typ Tx amplitude at TP0a/TP2
 - 5. (Option, simulation in progress) Change Channel COM value in the amount which will not largely affect pass/fail status of existing channels
 - 6. (Option, need more work, maybe .cd only) Specify the worst return loss of test channel of Rx ITT
 - Alternatively, specify test channel COM before calibration ≥ e.g. 4dB
 - 7. (Option, need more work, .cd only) Change broadband noise of Rx ITT to some sort of bounded uncorrelated noise
 - 8. (Option, need more work, .cd only) Change Rx ITT COM value to a relevant value to guarantee enough margin for interoperability
- Suggestions and contributions are welcome

Thank you