RL, ERL, COM, & PTDR investigations update
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How much impact does return loss have on the
COM specification?

Q Past standards specify a combination of or computation from
e Magnitude of frequency domain (FD) insertion loss (IL)
 Magnitude of FD return loss (RL)
* Magnitude of FD crosstalk (NEXT, FEXT)
* Much of the analysis is rooted in broadband

Q COM is specifies a minimum signal to noise ratio computed in the time domain
(TD) from
 Complex s parameters models of the reference package and the channel
* These inheritably include return loss and crosstalk
e COM analysis is rooted in baseband

d Problem: It may be possible for a system using a device and channel which
passes individual specifications to fail in practice if the actual test environment
or actual device differs greatly in return loss of the reference device.

* This called a “false positive” system
e Limiting return loss has been suggested a means to limit false positives

IEEE 802.3 50 Gb/s, 100 Gb/s, and 200 Gb/s Ethernet Task Force



Return loss is more of an issue for PAM-4

Q Bandwidth reduces by about 1/2

3 Signals goes down by 1/3

3 ISl noise only goes down by about 3/5

A The impact of linearly reduces the signal by 5 %

Q That means RL parity is 7.4 dB worse for PAM-4 vs NRZ

Q Hence the impact can be expect to be more critical and worse the
problem of the false positives

QA So let look closer at how return loss effects performance
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Forthcoming Analysis

d Focus first on channel return loss
Q Reflection experiment

a PTRD, IL, and RL
Q Pulse response comparison for reflection choices

Q COM, ERL, gated ERL, and RL comparison
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Set up the channel RL experiments

Utilize a channel with just 2 impairment
1) Loss~27 dB @ 13.3 GHz
2) Two reflection reflections

Determine ISI impact by using a COM computation

. Signkaling: 50Gbs PAM4 — IEEE802.3 cd clause 137 equalization and the 30 mm
package

* For COM computation, remove all noise sources and jitter except SNR_Tx

* Adjust SNR_Tx to achieve just slightly higher than 3 dB COM
e For these experiments 24 dB was used for SNR_Tx

QA Investigate for correlations between COM and PTDR computation into a
single number

Q Refine the computation to a single return loss parameter called effective
return loss (ERL)

Q Tie ERL to parameter in the device and channel specifications
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Reflection experiment using a 27 dB IL channel and 2 reflections
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“a” is lead in to reflection
“b” is separation between reflections
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Details, Keys, and Examples ~ 27 dB @ 13.3 GHz
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1 mm

PTDR for 1 mm and 40 mm lead in (a) §§
10 mm space: (same insertion losses) somm ||
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Takeaway: 10

* As expected the farther the reflection is from the measurement
point the higher the return loss.
 The round trip is added to the return loss
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Observation: More post DFE ISl in a=40 mm case,

but less ISl in DFE region
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When a = 160 mm COM improves, However ISl is
worse in DFE region
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ERL Computation: Weighted Gating Algorithm

O R.(t) is computed with time gating and weighting of a Pulse TDR waveform, PTDR(t)

Q reff, , is the time sampled waveform of R(t)
Samples per Ul is represented by “i”

" ”

Number of Ul is represented by “m

Method 1: ERL=RMS(reff; ;. )
Method 2: ERL=Greatest CDF(PDF(reff, ,. ® 'Constellation)) @BER
Method 3: ERL=Greatest RSS(reff; ,. ) for each i

Converting ERL to positive dB makes this somewhat similar to RL in the frequency domain

U 0O 00

1Constellation for PAM-4 = [-1-1/3 1/3 1]

L—Nb—l

_( Bx(t-Tp(Np+1))
Reff(t) = PTDR(t) \ 1 — p,(1 + pyle ‘b

) ) 1025

DFE compensation and re-reflection Loss compensation

IEEE 802.3 50 Gb/s, 100 Gb/s, and 200 Gb/s Ethernet Task Force



Plot COM, ERL11 gated vs Lead in for b=10 mm
and package length =12 mm and 30 mm
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RMS seems to produce the same shape curves but
not sure how to tie in high ERL numbers
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Ungated ERL does not track COM
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dB

Return Loss does not track COM

LOSS responses
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Does changing the amount of reflection alter the

trends of the results?

A Change the capacitor to 400 ff from 200 ff
Q Shorten the total length to 450 mm from 600 mm to keep around 3

dB of COM
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Short total length but still about 27 dB IL at 13.3 GHz

Loss responses
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Similar trends regardless of reflection magnitude
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Takeaway:

* Similar effects on either end of the channel
* A key factor is the distance a channel reflection is from either Tx or Rx package
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Finer lead in step sizes show DFE effects
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ad COM packages seem somewhat interactive lead in (a) distance

Q DFE effect can clearly be seen as COM is constant for b=5,10, and 15
for progressively shorter lead in values of a for the 12 mm package

QA This suggest there are two components of package return loss:
* Loss
* Reflections
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