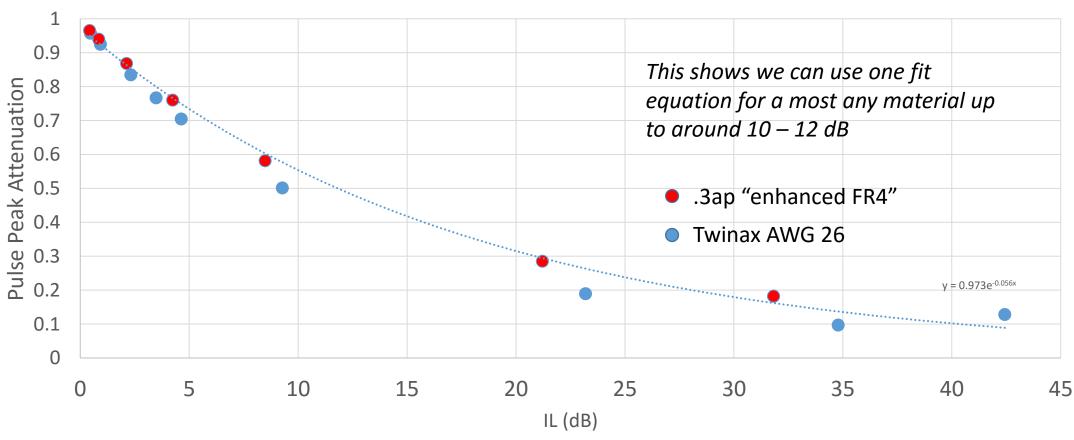
COM and ERL update post d3.1

Richard Mellitz, Samtec

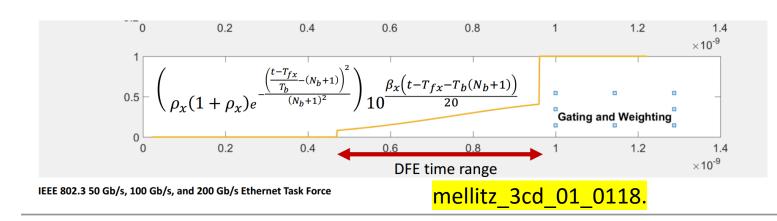
3/21/2018

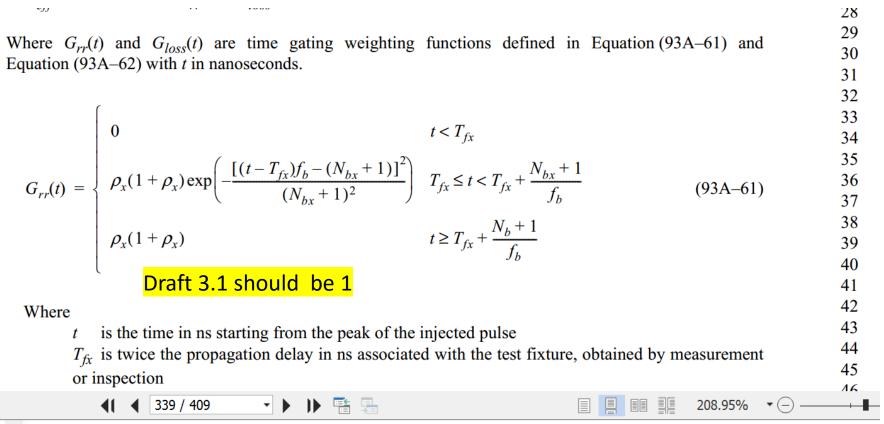

Overview of WIP

Clause	ERL Min (dB) D3.2	ρ _x D3.2	β _x D3.2	N D3.2	ERL Min (dB) D3.2 comment	ρ _x D3.2 comment	B _x D3.2 comment	N D3.2 comment
136 Tx Host	$8 - 40 \log_{10} \left(\frac{P_{max}}{V_f} \right)$. 44	10.7	300	WIP	WIP	WIP	WIP
136 Rx Host	14.5	. 44	10.7	300	WIP	WIP	WIP	WIP
136 Cable Assembly	11	. 44	10.7	1000	WIP	WIP	WIP	WIP
137 Tx Device	16.1	.44	10.7	100	15	$e^{\frac{-ERL_{\min_channel}}{20}}$ = 0.32	1.7	100
137 Rx Device	16.1	.44	10.7	100	15	$e^{\frac{-ERL_{\min_channel}}{20}} = 0.32$	1.7	100
137 Channel	10	0. 44	10.7	300?	10	$e^{\frac{-ERL_{\min}_devoce}{20}} = 0.18$	1.7	1000

Re looking at IL and pulse (f_b=13.28 GHz) peak reduction will be used to determine

The pulse peak reduction will be used to determine β_{x} and which adjusts the pulse TDR for loss




Rethinking β_x

- \Box T_b*N_b (12UI) is about the reflection delay of the long package \rightarrow .452 ns (0.47 ns)
 - set reflection delay t_{rd} = 0.47 (ns)
- ☐ Let pa = peak attenuation and IL = insertion loss
- \Box $pa = 0.973 e^{-0.06 IL}$; fit from previous page
 - IL for the long package (30 mm) = 3.3 dB

$$\Box \beta_x = \frac{pa}{t_{rd}} = 1.7 \text{ GHz}$$

ρ_x should only act on the range for rereflections of the DFE taps

Now ρ_x makes the more sense

$$\Box \rho_{x} = e^{\frac{-ERL_{min}}{20}}$$

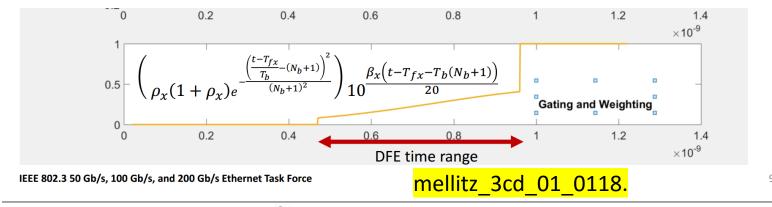
- ☐ For channels ERL limit = 10 dB
 - $\rho_{x} = 0.32$ to be used for devices
- ☐ For Tx and Rx devices ERL_{min} = 15 dB
 - $\rho_{x} = 0.18$ to be used for channels

Adjust COM examples spreadsheet parameters

137 Tx/Rx Device input file, s2p: like RL 137 Channel input file: s4p

Non stand			
COM_CONTRIBUTION	0	logical	
TDR	1	logical	
ERL	2	logical	
Z_t	50	ohms	
ERL_ONLY	1	logical	
TR_TDR	0.0189	ns	
TDR_duration	10		
N	100		
TDR_f_BT_3db	19.921875	GHz	
TDR_Butterworth	1	logical	
beta_x	1.70E+09		
			set to zero for no
rho_x	0.32		fixture for KR
			channel
fixture delay time	4.00E-10		

Oper			
COM Pass threshold	3	dB	
ERL Pass threshold	15	dB	0, 1
Include PCB	0	Value	
Grr_limit	1		

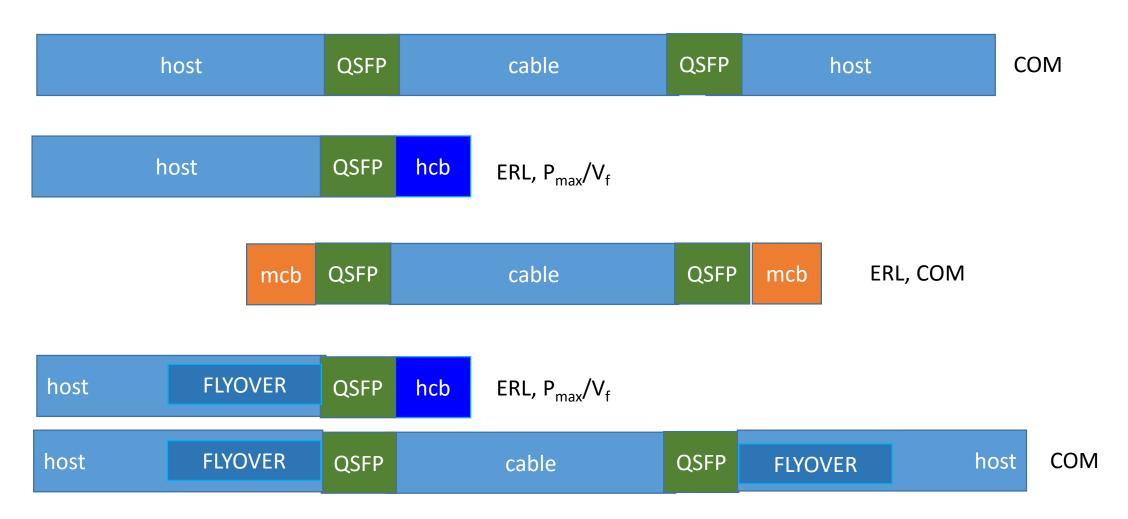

Non stand			
COM_CONTRIBUTION	0	logical	
TDR	1	logical	
ERL	1	logical	
Z_t	50	ohms	
ERL_ONLY	0	logical	
TR_TDR	0.0189	ns	
TDR_duration	10		
N	1000		
TDR_f_BT_3db	19.921875	GHz	
TDR_Butterworth	1	logical	
beta_x	1.70E+09		
rho_x	0.18		set to zero for no fixture for KR channel
fixture delay time	0.00E+00		

Oner			
COM Pass threshold	ational control 3	dB	
ERL Pass threshold	10	dB	0, 1
Include PCB	0	Value	
Grr_limit	1		

Moving on to Clause 136: Cable Assemblies and Host

Draft Amendment to IEEE Std 802.3-201x IEEE P802.3cd Task Force

$$G_{loss}(t) = \begin{cases} 0 & t < T_{fx} \\ \frac{\beta_x}{f_b} [(t - T_{fx})f_b - (N_{bx} + 1)]}{20} & T_{fx} \le t < T_{fx} + \frac{N_{bx} + 1}{f_b} \\ 1 & t \ge T_{fx} + \frac{N_{bx} + 1}{f_b} \end{cases}$$


(93A-62)

- Where
- t is the time in ns starting from the peak of the injected pulse
- T_{fx} is twice the propagation delay in ns associated with the test fixture, obtained by measurement or inspection

 β_x , f_b , N_{bx} are supplied by the clause that invokes this method.

- I Intentionally the package delay was within the reference receiver "DFE shadow"
 - So it was easy to use that number to adjust for the fact that short packages may perform better than long packages
- ☐ A host has much longer delay
- We should be able to use a different number for N_{bx}

Some more correlation work for Clause 136 is needed to determine values for N_{bx} , ρ_{x} , and β_{x} and ERL_{min} and better use P_{max}/V_{f}

Next

- ☐ Add parameter separation of N_{bx} for G_{rr} and G_{loss} to COM
- ☐ Determine sets of passing and failing cable assemblies
- \square Match with Host ERL and P_{max}/V_f
- ☐ Determine best set of parameters for optimizing the tradeoff between false pass and false fail