IEEE 802.3 Single Pair Ethernet Enhancements
Call for Interest Consensus Building Meeting

George Zimmerman / CME Consulting
affil: ADI, APL Group, Cisco, CommScope, Marvell, SenTekSe
Peter Jones / Cisco
Jordon Woods / ADI
3/8/21
Supporters & Contributors

Tim Baggett – Microchip
Piergiorgio Beruto - CanovaTech
David Brandt – Rockwell Automation
Theo Brillhart – Fluke
Steve Carlson – High Speed Design
Clark Carty – Cisco Systems
John D’Ambrosia - Futurewei
Chris DiMinico – MC Communications
Lars Ellegard – Microchip
Peter Fischer – BKS Kabel-Service AG
Matthias Fritsche – HARTING
Michael Hilgner - TE

Wayne Hopkinson – Commscope
Bernd Horrmeyer – Phoenix Contact
Gergely Huszak – Kone
Chad Jones – Cisco
Peter Jones - Cisco
Ragnar Jonsson – Marvell
Jannis Kappertz – Endress+Hauser
Beth Kochuparambil – Cisco
Martin Leihenseder – Wurth Elektronik
Jon Lewis – Dell EMC
Thomas Leyrer – Texas Instruments
Stefan Lueder – Siemens
Kent Lusted - Intel
Supporters & Contributors

Valerie Maguire – Siemon Company
Mick McCarthy – ADI
Brett McClellan - Marvell
Geet Modi – Texas Instruments
Harald Mueller – Endress+Hauser
Mark Nowell – Cisco Systems
Martin Ostertag – Zurich University of Applied Sciences
Christopher Pohl - Beckhoff
Jason Potterf – Cisco Systems
Thomas Rettig - Beckhoff
Dieter Schicketanz – Reutlingen University

Guenter Steindl – Siemens
Heath Stewart - ADI
Bob Voss – Panduit
Ludwig Winkel – L.A.N. Winkel Consulting
Jordon Woods - ADI
Peter Wu - Marvell
Dayin Xu – Rockwell Automation
James Young – Commscope
George Zimmerman – CME Consulting
Steve Zuponcic – Rockwell Automation
Agenda

• What is Operational Technology and how does SPE fit into it?
• What Needs Enhancing?
• Near Term: Providing for TSN on SPE Trunks
• Long Term: The Next Step in long-reach pt-to-pt SPE
• Why now?
• Wrap-up and Q&A
Why are we here?

• To:
 – Initiate discussion on the uses of Single Pair Ethernet in Operational Technology Networks
 – Enhance anything left out of point-to-point Single Pair Ethernet necessary for deployments in Operational Technology
 – Begin discussions on the next steps and future roadmap of point-to-point Single Pair Ethernet for Operational Technology
WHAT IS OPERATIONAL TECHNOLOGY AND HOW DOES SPE FIT INTO IT?
What are OT Networks?

OT networks are control networks

They monitor and control the profit-making assets of a business (e.g. factories, buildings)

SPE targets edge applications in OT networks
IT Transition circa 1990

TCP/IP
OT Modernization Challenge

Physical Conditions, Cabling Structures, etc

TCP/IP

EtherNet/IP
Foundation FieldBus
Mitsubishi Electric
RS232
Yokogawa
DALI
Modbus
Signify
CAN
Schneider Electric
ABB
Kone
VAN
HART
Pepper Fuchs
ODVA
DeviceNet
CIP
Pepper Fuchs
ControlNet
FieldComm
ABB
Honeywell
ControlNet
Honeywell
Emerson
FDI
Emerson
Siemens
FlexRay
Endress Hauser
RS485
D2B
Omron
MOST
DI
Leuze
EtherCAT
IEBUS
CIP
FlexRay
Endress Hauser
RS485
D2B
Omron
MOST
DI
Leuze
EtherCAT
IEBUS
CIP

4-10mA

PROFIBUS

PROFINET

Two Wire
Promise of Ethernet for OT Network

- **Improved Cybersecurity**: Improved cybersecurity via Ethernet adoption
- **Flatter Networks**: Reduce or eliminate protocol translation gateways
- **Single Connection**: Power and data delivered with one connection
- **Plug and Play**: Simpler and easier to deploy
- **SPE Advantage**: Suited for the target environments and topologies. “Right Sized” for the sensor market
Industrial edge networking components (includes switches, routers, access points, gateways, connectors).

- The world market for in 2019 is estimated to have been $2.86 billion
- Switches are the bulk of the revenue.
- In 2020, revenues are forecast to decline by 3.4%; overall, from 2019 to 2024, revenues are forecast to grow at a 7.1% compound annual growth rate (CAGR). The decline in 2020 is the result of the economic meltdown due to COVID-19.
- Unit shipments are forecast to grow at a 6.7% CAGR from 2019 to 2024, while the ASP is forecast to increase at a 0.4% CAGR.

Non-Ethernet fieldbuses still required to complete communications to the edge
- Cable lengths > 1km
- 1200 baud to hundreds of kb/sec
- Challenges: Combined reach & rate, special environments, cost of operation

Ethernet Gap at the ‘Edge’

Credit: Dr. Raimund Sommer, Endress+ Hauser, ODVA Industry Conference, Oct. 2014.

From https://www.ieee802.org/3/cfi/0716_1/CFI_01_0716.pdf
Expanding Ethernet in OT

Familiar Topologies
- Network topology driven by use case
- Point to point, multidrop, trunk & spur
- Reach, cable type

Power Delivery
- Power small device (e.g., sensor, field switch)
- Power control system for larger device (e.g., HVAC air handling unit)

TSN - synchronization
- Precision Time Protocol (e.g., IEEE 1588 default, 802.1AS, IEC 62439-3, SMPTE 2059)
- Tracking events
- Coordinating actions

TSN – Latency
- Frame Preemption (IET)
- Credit Based Shaper
- Scheduled Traffic

TSN – Reliability
- Frame Replication and Elimination
- Path Control and Reservation
- Per-Stream Filtering and Policing

TSN - Resource Management
- Stream Reservation Protocol
- Link-local Registration Protocol
- LLDPv2 for MultiframeData Units
- Multicast and Local Address Assignment
Example SPE Cases

- **Short:**
 - In-cabinet, chassis
 - Vehicles
 - Multipoint topologies

- **Medium:**
 - Industrial pods (5-40m)
 - Building control networks (50-100m)
 - Process control “spurs” (200m)

- **Long:**
 - Process control trunks (1km)
 - Building automation trunks (500m)

- Application drives cabling (e.g., wire gauge)
Enhancements: 802.3da

• **Short:**
 – In-cabinet, chassis
 – Vehicles
 – Multipoint topologies

• **Medium:**
 – Industrial pods (5-40m)
 – Building control networks (50-100m)

802.3da multidrop (NOT THIS CFI)
What still needs enhancing?

- **Long:**
 - Process control trunks (1km)
 - Building automation trunks (500m)

- **Medium**
 - Higher bandwidth devices (spurs, 200m) will follow trunks

This has two parts: Near-term (initial 10BASE-T1L deployments), and Long-term (providing for growth 4-5 years from now)
THE NEAR-TERM: PROVIDING FOR TSN ON SPE TRUNKS

Process Automation (PA) Characteristics

• A PA system is used to control a process such as chemical, steel, oil refineries, petrochemical, paper or pulp factories.
 – Individual stations are spread over a large geographical area.
 – 10BASE-T1L is needed to provide connectivity over these distances.
• PA data consist of many analog values, such as temperature, pressure, flow, or level.
• Fast control cycle is NOT required (1 sec cycle is enough in many cases).
• A PA system operates 24x7x365 and requires procedures to stop safely.
• Hence, the extra high reliability and availability is required
Communication Example (in a TSN domain)

- Application Scan Interval
 - HMI: 1,000ms
 - Controller: Basic 1,000ms, Fast 100ms
- Controllers to HMI (monitoring)
 - Data size: 1,400 Byte
 - Up to 3,000 subscribed signals per scan interval
 - Scan interval: 1,000ms
- IO Control Data Size (PV or MV)
 - 4 Byte data + 1-4 Byte status per IO item
 - Up to 1,024 Byte per IO-Station (which has up to 128 IO items)
 - Input vs. Output = 2:1 (typically)
- IO-Stations to Controllers (input)
 - Up to 2,000 published signals per scan interval (typical 1,500)
 - Scan interval: 100 - 1,000ms (typical 1,000ms)
- Controllers to IO-Stations (output)
 - Up to 2,000 published signals per scan interval (typical 750)
 - Scan interval: 100 - 1,000ms (typical 1,000ms)
- Controllers to Controllers
 - Up to 1,000 published signals per scan interval
 - Scan interval: 50 - 500ms (typical 500ms)
Minimizing Latency for important traffic

- In the presence of so many traffic sources, congestion is inevitable
- The 60802 Profile defines seven traffic types to accommodate traffic
 - Due to the comparatively slow control loop cycles, the added complexity of scheduled traffic is usually undesirable
 - However certain traffic types required minimized latency, making the MAC Merge sublayer desirable

<table>
<thead>
<tr>
<th>Traffic type name</th>
<th>Cyclic</th>
<th>Data delivery requirements</th>
<th>Time-triggered Transmit</th>
<th>Traffic-type-category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isochronous</td>
<td>Yes</td>
<td>Deadline</td>
<td>Yes</td>
<td>IA time-aware-stream</td>
</tr>
<tr>
<td>Cyclic-Synchronous</td>
<td>Yes</td>
<td>Latency</td>
<td>Yes</td>
<td>IA time-aware-stream</td>
</tr>
<tr>
<td>Cyclic-Asynchronous</td>
<td>Yes</td>
<td>Latency</td>
<td>No</td>
<td>IA stream</td>
</tr>
<tr>
<td>Alarms and Events</td>
<td>No</td>
<td>Latency</td>
<td>No</td>
<td>IA traffic engineered non-stream</td>
</tr>
<tr>
<td>Configuration & Diagnostics</td>
<td>No</td>
<td>Latency</td>
<td>No</td>
<td>IA traffic engineered non-stream</td>
</tr>
<tr>
<td>Network Control</td>
<td>Optional</td>
<td>Latency</td>
<td>No</td>
<td>IA traffic engineered non-stream</td>
</tr>
<tr>
<td>Best Effort</td>
<td>No</td>
<td>N/A</td>
<td>No</td>
<td>IA non-stream</td>
</tr>
</tbody>
</table>
So, What’s the Problem?

- Clause 99.1 in IEEE Std 802.3-2018:
 “specifies an optional MAC Merge sublayer for use with a pair of full-duplex MACs and a single PHY operating at 100 Mb/s or higher on a point-to-point link”
 - This makes perfect sense in that many 10 Mb/s PHY do not support the PCS and thus will not recognize the SMD which is the Start of Mpacket Delimiter
 - However the newer 10 Mb/s PHY technologies (T1L and T1S) do support the PCS and will work with the MAC Merge sublayer
- Other TSN features (scheduled traffic, FRER, ATS, etc.) are already compatible with these PHY technologies.
NEAR TERM NEED: MAKE 10 MB/S PT-TO-PT A “FULL CITIZEN” FOR TSN
10BASE-T1L and TSN

• 10BASE-T1L is included in the list of Common PHY and MAC Options (5.6.1) of IEC/IEEE 60802d1.2
 – For Process Automation, 10BASE-T1L is an essential technology to replace various legacy technologies for relatively long distances and in harmful environments

• There are some gaps that need to be discussed and addressed
 – 10BASE-T1L and Frame Preemption / MAC Merge sublayer
 – 10BASE-T1L and IEEE 802.1AS-2020 Link Delay Threshold
 – 10BASE-T1L and IEEE 802.1AS-2020 Performance Requirements
What 802.3cg forgot:
MAC Merge for 10BASE-T1L

99. MAC Merge sublayer

99.1 Introduction

This clause specifies an optional MAC Merge sublayer for use with a pair of full-duplex MACs and a single PHY operating at 100 Mb/s or higher on a point-to-point link. The two MACs are:

- Speed limitation was an easy way for Clause 99 to avoid old, ‘legacy’ PHYs
 - BUT: 10BASE-T1L is architected like modern, >100 Mb/s PHYs (MII -> PCS -> PMA, full duplex)
- Why not Maintenance? – New feature
- Does it work? Did we forget anything else?

Source: IEEE Std 802.3-2018
What is left out of TSN for 10BASE-T1L?

• Addition of 10BASE-T1L to MAC MERGE clause should be easy and straightforward
• Should be a simple project
• Study group should first look and make sure nothing else is missing

10BASE-T1L MACMERGE demonstration
Source: Martin Ostertag (private communication)
Is there anything else?

- Notes on MII say 100 Mb/s and above
 - (802.3cg changed this in Fig 1-1, but left out Fig 90-1 and 99-1)

- Any time sync issues?
 - None identified, but study group is the place to look
LONG TERM: WHAT IS THE NEXT STEP IN LONG-REACH POINT-TO-POINT SPE
The Next Speed? From 10 Mb/s?

- Filling in the SPE ecosystem
 - As SPE spur deployment fills out, this will put pressure on the trunks
 - Traditionally, Ethernet has provided a higher speed
- What is the right speed for long-reach SPE trunks as 10BASE-T1L deployment grows
- This is NOT about a new Ethernet Speed
 - But the time is now to begin the discussions for a new PHY speed to support needs 5 years from now as SPE grows
Beyond 15m: Existing PHYs Don’t Come Close to 10BASE-T1L

• Clause 96: 100BASE-T1
 – Defined for automotive, link segment defined for 15m
 – No delay specification
 – How far can it really go?
 – Reach limited by design for automotive UTP

• Clause 97: 1000BASE-T1/Option B – 40m…
 – Reach limited by echo canceller, SNR, Automotive signalling design

• BUT – these are 26 AWG cables… T1L generally uses larger diameter cabling (16-18 AWG)
What is the Next step for T1L?

- Desire to use existing cable/topologies
 - E.g., fieldbus type A (35 MHz), 16-18 AWG (1.5-0.75mm^2)
 - MUCH less insertion loss/meter than automotive cabling

- Differing views
 - Rate: 100 Mbps? 1 Gbps?
 - Reach: 100m, 200m, 500m, 1km

- Varying complexity solutions

GETTING CONSENSUS ON THIS IS WHAT A STUDY GROUP IS ABOUT
One view of a path forward

- 100-200m short trunks and spurs with a reach extension to 100BASE-T1 (Cl 96) or similar technology
 - Minor modifications to existing standard
 - Consider needs of industrial, building & process automation vs. original target of automotive

SPE PHY: Measured Cable Reach with IEEE 802.3cg, IEEE 802.3bw PHYs

<table>
<thead>
<tr>
<th></th>
<th>802.3bw 100Base-T1</th>
<th>802.3cg 10Base-T1L</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE Standard</td>
<td>802.3bw 100Base-T1</td>
<td>802.3cg 10Base-T1L</td>
</tr>
<tr>
<td>Baud Rate</td>
<td>66.66MHz</td>
<td>7.5 MHz</td>
</tr>
<tr>
<td>Channel</td>
<td>1 pair UTP</td>
<td>Profibus Standard PA Cable</td>
</tr>
<tr>
<td>Modulation</td>
<td>PAM-3</td>
<td>PAM-3</td>
</tr>
<tr>
<td>Tx-PSD/VoD</td>
<td>Lower & Upper Mask</td>
<td>Lower & Upper Mask/Vod min/max limits 2.4V p2p/1V p2p</td>
</tr>
<tr>
<td>FEC</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Equalization</td>
<td>Receiver Based</td>
<td>Receiver Based</td>
</tr>
<tr>
<td>Echo Canceller</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IEEE Design Cable Reach</td>
<td>15m</td>
<td>1000m</td>
</tr>
<tr>
<td>Ethernet PHY</td>
<td>DP83TC811</td>
<td>DP83TD510E</td>
</tr>
<tr>
<td>Measured Cable Reach (Profibus PA Standard Cable)</td>
<td>100 meters+</td>
<td>2000 meters + (for both 2.4V p2p and 1V p2p)</td>
</tr>
<tr>
<td>TSN IEEE 802.3br SMD compliant</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Technology exists with SPE PHY to reach the requirement of the long reach Industrial SPE 100M with appropriate noise and delay budgeting

Source: Geet Modi/Texas Instruments
Industry Moves Ahead: APL Phase 2 Project

Working Prototype 200 m Fieldbus Type A Cable @ 100Mbps / PAM 3

Source: Harald Mueller, Endress+Hauser
• 10 Mbps: 10BASE-T1L
 – Backward compatibly with 10 Mbps at least 800 m using 0.5 V transmit amplitude (1 V pp)

• 100 Mbps:
 – 300 m cable by using 1 V transmit amplitude (2 V pp), without bit errors
 – 220 m cable by using 0.5 V transmit amplitude (1 V pp), without bit errors
 • 3B2T encoding was tested for 100Mbps and achieved the same maximum reach -> 4B3T is more applicable for intrinsic safety applications due to its disparity observing encoding
Other views – longer reach?

- New PHY design
 - Utilize shielded cabling common in industrial applications
 - Improved alien crosstalk over specification
 - E.g., 500m, 100 Mbps PHYs example
 - Minimal 4 dB coded gain
 - E.g., PAM-5, 50 MBd, 4dB coding gain
 - New phy designs possible

GETTING CONSENSUS ON THIS IS WHAT A STUDY GROUP IS ABOUT
Why Now

• SPE (10BASE-T1L) chipsets/eval boards available now from multiple vendors
• SPE system products in 2021
 – APL certification
 – APL demo in June 2021 at ACHEMA
• Standards timeline is longer for next generations
 – More options, learning feedback
 • Next generation needed 2025-2026
For Next-Gen products in 2H 2025, Start Now

<table>
<thead>
<tr>
<th>802.3cg:</th>
<th>Start: July 2016</th>
<th>(Sept 2016)</th>
<th>(Jan 2017)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Possible next-gen:</td>
<td>Start: March 2021</td>
<td>(May 2021)</td>
<td>(Jan 2022)</td>
</tr>
</tbody>
</table>

Approved: Nov 6, 2019
Products: 2021
Nov 2023? 2025?

Call for Interest
- Very broad scope
- Working Group to approves looking at a project

Study Group
- Scoped by Working Group Motion
- Build case for a specific project scope
- Initial objectives

Task Force
- Select proposals
- Refine Objectives
- Prepare technically complete draft

Working Group Ballot
- Entire 802.3 community reviews draft and comments on it
- Voting by 802.3
- Comments resolved by Task Force

Sponsor Ballot
- IEEE-SA reviews, votes, comments on draft
- Comments resolved by Task Force (as Ballot Resolution Committee)
- IEEE-SA REVCOM reviews process, recommends
- IEEE-SASB approves standard

3/9/2021 IEEE 802.3 Call for Interest Consensus Building
WRAP UP
What are we planning

• (At least) Two potential PARs from this CFI:
 – Short term – TSN Enhancements
 – Long term – Next generation point-to-point SPE (T1L)

• Specifically, multidrop, and hence PLCA would be out of scope of the proposed *point-to-point* effort
 – (see IEEE Std 802.3cg-2019 Clause 148 introduction)
 – Multidrop enhancements are 802.3da
Should a study group be formed to study Enhancements to point-to-point Single Pair Ethernet to:

- support TSN
- And support increasing traffic and speed needs with long reach point-to-point higher-speed single-pair PHYs

- Y: 104
- N: 1
- A: 13
- Call Count: 153

Results as of 9:12 AM PT
Straw Polls

• I would participate in the “Enhancements to point-to-point Single Pair Ethernet” Study Group in IEEE 802.3
 – Tally: 54

• I believe my affiliation would support my participation in the “Enhancements to point-to-point Single Pair Ethernet” Study Group in IEEE 802.3
 – Tally: 46

Results as of 9:12 AM PT
Future work

• Ask 802.3 WG for approval at Nov 2020 Closing Meeting
• If approved, request formation of “Enhancements to point-to-point Single Pair Ethernet” Study Group by IEEE 802 EC
• If approved, Creation of Study Group page /reflector
• Anticipated first Study Group meeting (teleconference), if approved by 802.3, will be announced at the closing 802.3 plenary.